sw_engine: missing implementations added

Rastering functions for masked images that are not rectangular
(clipped) were implemented.
This commit is contained in:
Mira Grudzinska 2021-11-10 12:29:44 +01:00 committed by Hermet Park
parent d8262dd1f8
commit 10e0d18d6e

View file

@ -252,16 +252,44 @@ static bool _translucentImageRle(SwSurface* surface, const SwImage* image, uint3
}
static bool _translucentImageRleMask(SwSurface* surface, const SwImage* image, uint32_t opacity, uint32_t (*blendMethod)(uint32_t rgba))
{
TVGLOG("SW_ENGINE", "Image Rle Alpha Mask / Inverse Alpha Mask Composition");
auto span = image->rle->spans;
auto img = image->data;
auto w = image->w;
auto cbuffer = surface->compositor->image.data;
for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto cmp = &cbuffer[span->y * surface->stride + span->x];
auto src = img + span->y * w + span->x; //TODO: need to use image's stride
auto alpha = ALPHA_MULTIPLY(span->coverage, opacity);
if (alpha == 255) {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp));
*dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp));
}
} else {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, ALPHA_MULTIPLY(alpha, blendMethod(*cmp)));
*dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp));
}
}
}
return true;
}
static bool _rasterTranslucentImageRle(SwSurface* surface, const SwImage* image, uint32_t opacity)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentImageRleAlphaMask()");
// return _translucentImageRleAlphaMask(surface, image, opacity);
return _translucentImageRleMask(surface, image, opacity, surface->blender.alpha);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentImageRleInvAlphaMask()");
// return _translucentImageRleInvAlphaMask(surface, image, opacity);
return _translucentImageRleMask(surface, image, opacity, surface->blender.ialpha);
}
}
return _translucentImageRle(surface, image, opacity);
@ -292,16 +320,53 @@ static bool _translucentImageRle(SwSurface* surface, const SwImage* image, uint3
}
static bool _translucentImageRleMask(SwSurface* surface, const SwImage* image, uint32_t opacity, const Matrix* itransform, uint32_t (*blendMethod)(uint32_t rgba))
{
TVGLOG("SW_ENGINE", "Transformed Image Rle Alpha Mask / Inverse Alpha Mask Composition");
auto span = image->rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto cbuffer = surface->compositor->image.data;
for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
auto ey2 = span->y * itransform->e22 + itransform->e23;
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto cmp = &cbuffer[span->y * surface->stride + span->x];
auto alpha = ALPHA_MULTIPLY(span->coverage, opacity);
if (alpha == 255) {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) {
auto rX = static_cast<uint32_t>(roundf((span->x + x) * itransform->e11 + ey1));
auto rY = static_cast<uint32_t>(roundf((span->x + x) * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
auto tmp = ALPHA_BLEND(img[rY * w + rX], blendMethod(*cmp)); //TODO: need to use image's stride
*dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp));
}
} else {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) {
auto rX = static_cast<uint32_t>(roundf((span->x + x) * itransform->e11 + ey1));
auto rY = static_cast<uint32_t>(roundf((span->x + x) * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
auto src = ALPHA_BLEND(img[rY * w + rX], alpha); //TODO: need to use image's stride
auto tmp = ALPHA_BLEND(src, blendMethod(*cmp));
*dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp));
}
}
}
return true;
}
static bool _rasterTranslucentImageRle(SwSurface* surface, const SwImage* image, uint32_t opacity, const Matrix* itransform)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentImageRleAlphaMask()");
// return _translucentImageRleAlphaMask(surface, image, opacity, itransform);
return _translucentImageRleMask(surface, image, opacity, itransform, surface->blender.alpha);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentImageRleInvAlphaMask()");
// return _translucentImageRleInvAlphaMask(surface, image, opacity, itransform);
return _translucentImageRleMask(surface, image, opacity, itransform, surface->blender.ialpha);
}
}
return _translucentImageRle(surface, image, opacity, itransform);
@ -336,16 +401,62 @@ static bool _translucentUpScaleImageRle(SwSurface* surface, const SwImage* image
}
static bool _translucentUpScaleImageRleMask(SwSurface* surface, const SwImage* image, uint32_t opacity, const Matrix* itransform, uint32_t (*blendMethod)(uint32_t rgba))
{
TVGLOG("SW_ENGINE", "Image Rle Alpha Mask / Inverse Alpha Mask Composition");
auto span = image->rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto cbuffer = surface->compositor->image.data;
for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
auto ey2 = span->y * itransform->e22 + itransform->e23;
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto cmp = &cbuffer[span->y * surface->stride + span->x];
auto alpha = ALPHA_MULTIPLY(span->coverage, opacity);
if (alpha == 255) {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) {
auto fX = (span->x + x) * itransform->e11 + ey1;
auto fY = (span->x + x) * itransform->e21 + ey2;
auto rX = static_cast<uint32_t>(roundf(fX));
auto rY = static_cast<uint32_t>(roundf(fY));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX == w - 1 || rY == h - 1) src = ALPHA_BLEND(img[rY * w + rX], alpha); //TODO: need to use image's stride
else src = ALPHA_BLEND(_applyBilinearInterpolation(img, w, h, fX, fY), alpha); //TODO: need to use image's stride
auto tmp = ALPHA_BLEND(src, blendMethod(*cmp));
*dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp));
}
} else {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) {
auto fX = (span->x + x) * itransform->e11 + ey1;
auto fY = (span->x + x) * itransform->e21 + ey2;
auto rX = static_cast<uint32_t>(roundf(fX));
auto rY = static_cast<uint32_t>(roundf(fY));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX == w - 1 || rY == h - 1) src = ALPHA_BLEND(img[rY * w + rX], alpha); //TODO: need to use image's stride
else src = ALPHA_BLEND(_applyBilinearInterpolation(img, w, h, fX, fY), alpha); //TODO: need to use image's stride
auto tmp = ALPHA_BLEND(src, ALPHA_MULTIPLY(alpha, blendMethod(*cmp)));
*dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp));
}
}
}
return true;
}
static bool _rasterTranslucentUpScaleImageRle(SwSurface* surface, const SwImage* image, uint32_t opacity, const Matrix* itransform)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentUpScaleImageRleAlphaMask()");
// return _translucentUpScaleImageRleAlphaMask(surface, image, opacity, itransform);
return _translucentUpScaleImageRleMask(surface, image, opacity, itransform, surface->blender.alpha);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentUpScaleImageRleInvAlphaMask()");
// return _translucentUpScaleImageRleInvAlphaMask(surface, image, opacity, itransform);
return _translucentUpScaleImageRleMask(surface, image, opacity, itransform, surface->blender.ialpha);
}
}
return _translucentUpScaleImageRle(surface, image, opacity, itransform);
@ -380,17 +491,62 @@ static bool _translucentDownScaleImageRle(SwSurface* surface, const SwImage* ima
return true;
}
static bool _translucentDownScaleImageRleMask(SwSurface* surface, const SwImage* image, uint32_t opacity, const Matrix* itransform, float scale, uint32_t (*blendMethod)(uint32_t rgba))
{
TVGLOG("SW_ENGINE", "Image Rle Alpha Mask / Inverse Alpha Mask Composition");
auto halfScale = static_cast<uint32_t>(0.5f / scale);
if (halfScale == 0) halfScale = 1;
auto span = image->rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto cbuffer = surface->compositor->image.data;
for (uint32_t i = 0; i < image->rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
auto ey2 = span->y * itransform->e22 + itransform->e23;
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto cmp = &cbuffer[span->y * surface->stride + span->x];
auto alpha = ALPHA_MULTIPLY(span->coverage, opacity);
if (alpha == 255) {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) {
auto rX = static_cast<uint32_t>(roundf((span->x + x) * itransform->e11 + ey1));
auto rY = static_cast<uint32_t>(roundf((span->x + x) * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rY * w + rX], alpha); //TODO: need to use image's stride
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScale), alpha); //TODO: need to use image's stride
auto tmp = ALPHA_BLEND(src, blendMethod(*cmp));
*dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp));
}
} else {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) {
auto rX = static_cast<uint32_t>(roundf((span->x + x) * itransform->e11 + ey1));
auto rY = static_cast<uint32_t>(roundf((span->x + x) * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rY * w + rX], alpha); //TODO: need to use image's stride
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScale), alpha); //TODO: need to use image's stride
auto tmp = ALPHA_BLEND(src, ALPHA_MULTIPLY(alpha, blendMethod(*cmp)));
*dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp));
}
}
}
return true;
}
static bool _rasterTranslucentDownScaleImageRle(SwSurface* surface, const SwImage* image, uint32_t opacity, const Matrix* itransform, float scale)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentDownScaleImageRleAlphaMask()");
// return _translucentDownScaleImageRleAlphaMask(surface, image, opacity, itransform, scale);
return _translucentDownScaleImageRleMask(surface, image, opacity, itransform, scale, surface->blender.alpha);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentDownScaleImageRleInvAlphaMask()");
// return _translucentDownScaleImageRleInvAlphaMask(surface, image, opacity, itransform, scale);
return _translucentDownScaleImageRleMask(surface, image, opacity, itransform, scale, surface->blender.ialpha);
}
}
return _translucentDownScaleImageRle(surface, image, opacity, itransform, scale);
@ -1446,4 +1602,4 @@ bool rasterImage(SwSurface* surface, SwImage* image, const Matrix* transform, co
return _rasterImage(surface, image, bbox);
}
}
}
}