SvgLoader: Support arc_to draw

Change-Id: I950c8e850605f990d6a0aa59a067ced571ffdb51
This commit is contained in:
JunsuChoi 2020-07-06 16:35:10 +09:00
parent be6e39eb02
commit 1d24838c67

View file

@ -14,7 +14,7 @@ static char* _skipComma(const char* content)
} }
static inline bool _parseNumber(char** content, float* number) static bool _parseNumber(char** content, float* number)
{ {
char* end = NULL; char* end = NULL;
*number = strtof(*content, &end); *number = strtof(*content, &end);
@ -26,7 +26,7 @@ static inline bool _parseNumber(char** content, float* number)
} }
static inline bool _parseLong(char** content, int* number) static bool _parseLong(char** content, int* number)
{ {
char* end = NULL; char* end = NULL;
*number = strtol(*content, &end, 10) ? 1 : 0; *number = strtol(*content, &end, 10) ? 1 : 0;
@ -36,6 +36,183 @@ static inline bool _parseLong(char** content, int* number)
return true; return true;
} }
void _pathAppendArcTo(vector<PathCommand>* cmds, vector<Point>* pts, float* arr, Point* cur, Point* curCtl, float x, float y, float rx, float ry, float angle, bool largeArc, bool sweep)
{
float cxp, cyp, cx, cy;
float sx, sy;
float cosPhi, sinPhi;
float dx2, dy2;
float x1p, y1p;
float x1p2, y1p2;
float rx2, ry2;
float lambda;
float c;
float at;
float theta1, deltaTheta;
float nat;
float delta, bcp;
float cosPhiRx, cosPhiRy;
float sinPhiRx, sinPhiRy;
float cosTheta1, sinTheta1;
int segments, i;
//Some helpful stuff is available here:
//http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
sx = cur->x;
sy = cur->y;
//If start and end points are identical, then no arc is drawn
if ((fabs(x - sx) < (1.0f / 256.0f)) && (fabs(y - sy) < (1.0f / 256.0f))) return;
//Correction of out-of-range radii, see F6.6.1 (step 2)
rx = fabs(rx);
ry = fabs(ry);
if ((rx < 0.5f) || (ry < 0.5f)) {
Point p = {x, y};
cmds->push_back(PathCommand::LineTo);
pts->push_back(p);
*cur = p;
return;
}
angle = angle * M_PI / 180.0f;
cosPhi = cosf(angle);
sinPhi = sinf(angle);
dx2 = (sx - x) / 2.0f;
dy2 = (sy - y) / 2.0f;
x1p = cosPhi * dx2 + sinPhi * dy2;
y1p = cosPhi * dy2 - sinPhi * dx2;
x1p2 = x1p * x1p;
y1p2 = y1p * y1p;
rx2 = rx * rx;
ry2 = ry * ry;
lambda = (x1p2 / rx2) + (y1p2 / ry2);
//Correction of out-of-range radii, see F6.6.2 (step 4)
if (lambda > 1.0f) {
//See F6.6.3
float lambdaRoot = sqrt(lambda);
rx *= lambdaRoot;
ry *= lambdaRoot;
//Update rx2 and ry2
rx2 = rx * rx;
ry2 = ry * ry;
}
c = (rx2 * ry2) - (rx2 * y1p2) - (ry2 * x1p2);
//Check if there is no possible solution
//(i.e. we can't do a square root of a negative value)
if (c < 0.0f) {
//Scale uniformly until we have a single solution
//(see F6.2) i.e. when c == 0.0
float scale = sqrt(1.0f - c / (rx2 * ry2));
rx *= scale;
ry *= scale;
//Update rx2 and ry2
rx2 = rx * rx;
ry2 = ry * ry;
//Step 2 (F6.5.2) - simplified since c == 0.0
cxp = 0.0f;
cyp = 0.0f;
//Step 3 (F6.5.3 first part) - simplified since cxp and cyp == 0.0
cx = 0.0f;
cy = 0.0f;
} else {
//Complete c calculation
c = sqrt(c / ((rx2 * y1p2) + (ry2 * x1p2)));
//Inverse sign if Fa == Fs
if (largeArc == sweep) c = -c;
//Step 2 (F6.5.2)
cxp = c * (rx * y1p / ry);
cyp = c * (-ry * x1p / rx);
//Step 3 (F6.5.3 first part)
cx = cosPhi * cxp - sinPhi * cyp;
cy = sinPhi * cxp + cosPhi * cyp;
}
//Step 3 (F6.5.3 second part) we now have the center point of the ellipse
cx += (sx + x) / 2.0f;
cy += (sy + y) / 2.0f;
//Sstep 4 (F6.5.4)
//We dont' use arccos (as per w3c doc), see
//http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm
//Note: atan2 (0.0, 1.0) == 0.0
at = atan2(((y1p - cyp) / ry), ((x1p - cxp) / rx));
theta1 = (at < 0.0f) ? 2.0f * M_PI + at : at;
nat = atan2(((-y1p - cyp) / ry), ((-x1p - cxp) / rx));
deltaTheta = (nat < at) ? 2.0f * M_PI - at + nat : nat - at;
if (sweep) {
//Ensure delta theta < 0 or else add 360 degrees
if (deltaTheta < 0.0f) deltaTheta += 2.0f * M_PI;
} else {
//Ensure delta theta > 0 or else substract 360 degrees
if (deltaTheta > 0.0f) deltaTheta -= 2.0f * M_PI;
}
//Add several cubic bezier to approximate the arc
//(smaller than 90 degrees)
//We add one extra segment because we want something
//Smaller than 90deg (i.e. not 90 itself)
segments = (int)(fabs(deltaTheta / M_PI_2)) + 1.0f;
delta = deltaTheta / segments;
//http://www.stillhq.com/ctpfaq/2001/comp.text.pdf-faq-2001-04.txt (section 2.13)
bcp = 4.0f / 3.0f * (1.0f - cos(delta / 2.0f)) / sin(delta / 2.0f);
cosPhiRx = cosPhi * rx;
cosPhiRy = cosPhi * ry;
sinPhiRx = sinPhi * rx;
sinPhiRy = sinPhi * ry;
cosTheta1 = cos(theta1);
sinTheta1 = sin(theta1);
for (i = 0; i < segments; ++i) {
//End angle (for this segment) = current + delta
float c1x, c1y, ex, ey, c2x, c2y;
float theta2 = theta1 + delta;
float cosTheta2 = cos(theta2);
float sinTheta2 = sin(theta2);
static Point p[3];
//First control point (based on start point sx,sy)
c1x = sx - bcp * (cosPhiRx * sinTheta1 + sinPhiRy * cosTheta1);
c1y = sy + bcp * (cosPhiRy * cosTheta1 - sinPhiRx * sinTheta1);
//End point (for this segment)
ex = cx + (cosPhiRx * cosTheta2 - sinPhiRy * sinTheta2);
ey = cy + (sinPhiRx * cosTheta2 + cosPhiRy * sinTheta2);
//Second control point (based on end point ex,ey)
c2x = ex + bcp * (cosPhiRx * sinTheta2 + sinPhiRy * cosTheta2);
c2y = ey + bcp * (sinPhiRx * sinTheta2 - cosPhiRy * cosTheta2);
cmds->push_back(PathCommand::CubicTo);
p[0] = {c1x, c1y};
p[1] = {c2x, c2y};
p[2] = {ex, ey};
pts->push_back(p[0]);
pts->push_back(p[1]);
pts->push_back(p[2]);
*curCtl = p[1];
*cur = p[2];
//Next start point is the current end point (same for angle)
sx = ex;
sy = ey;
theta1 = theta2;
//Avoid recomputations
cosTheta1 = cosTheta2;
sinTheta1 = sinTheta2;
}
}
static int _numberCount(char cmd) static int _numberCount(char cmd)
{ {
@ -170,12 +347,12 @@ static void _processCommand(vector<PathCommand>* cmds, vector<Point>* pts, char
} }
case 'q': case 'q':
case 'Q': { case 'Q': {
tvg::Point p[3]; Point p[3];
float ctrl_x0 = (cur->x + 2 * arr[0]) * (1.0 / 3.0); float ctrl_x0 = (cur->x + 2 * arr[0]) * (1.0 / 3.0);
float ctrl_y0 = (cur->y + 2 * arr[1]) * (1.0 / 3.0); float ctrl_y0 = (cur->y + 2 * arr[1]) * (1.0 / 3.0);
float ctrl_x1 = (arr[2] + 2 * arr[0]) * (1.0 / 3.0); float ctrl_x1 = (arr[2] + 2 * arr[0]) * (1.0 / 3.0);
float ctrl_y1 = (arr[3] + 2 * arr[1]) * (1.0 / 3.0); float ctrl_y1 = (arr[3] + 2 * arr[1]) * (1.0 / 3.0);
cmds->push_back(tvg::PathCommand::CubicTo); cmds->push_back(PathCommand::CubicTo);
p[0] = {ctrl_x0, ctrl_y0}; p[0] = {ctrl_x0, ctrl_y0};
p[1] = {ctrl_x1, ctrl_y1}; p[1] = {ctrl_x1, ctrl_y1};
p[2] = {arr[2], arr[3]}; p[2] = {arr[2], arr[3]};
@ -217,12 +394,8 @@ static void _processCommand(vector<PathCommand>* cmds, vector<Point>* pts, char
} }
case 'a': case 'a':
case 'A': { case 'A': {
//TODO: Implement arc_to _pathAppendArcTo(cmds, pts, arr, cur, curCtl, arr[5], arr[6], arr[0], arr[1], arr[2], arr[3], arr[4]);
break; *cur = {arr[5] ,arr[6]};
}
case 'E':
case 'e': {
//TODO: Implement arc
break; break;
} }
default: { default: {