mirror of
https://github.com/thorvg/thorvg.git
synced 2025-06-08 05:33:36 +00:00
utils/math: binary size reduction
reduced the binary size by 2kb by removing the inline code.
This commit is contained in:
parent
e4b8f70f4f
commit
846823bd7f
3 changed files with 110 additions and 77 deletions
|
@ -6,6 +6,7 @@ source_file = [
|
|||
'tvgStr.h',
|
||||
'tvgBezier.cpp',
|
||||
'tvgLzw.cpp',
|
||||
'tvgMath.cpp',
|
||||
'tvgStr.cpp'
|
||||
]
|
||||
|
||||
|
|
102
src/utils/tvgMath.cpp
Normal file
102
src/utils/tvgMath.cpp
Normal file
|
@ -0,0 +1,102 @@
|
|||
/*
|
||||
* Copyright (c) 2021 - 2023 the ThorVG project. All rights reserved.
|
||||
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
|
||||
* The above copyright notice and this permission notice shall be included in all
|
||||
* copies or substantial portions of the Software.
|
||||
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
* SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "tvgMath.h"
|
||||
|
||||
|
||||
bool mathInverse(const Matrix* m, Matrix* out)
|
||||
{
|
||||
auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) -
|
||||
m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) +
|
||||
m->e13 * (m->e21 * m->e32 - m->e22 * m->e31);
|
||||
|
||||
if (mathZero(det)) return false;
|
||||
|
||||
auto invDet = 1 / det;
|
||||
|
||||
out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet;
|
||||
out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet;
|
||||
out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet;
|
||||
out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet;
|
||||
out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet;
|
||||
out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet;
|
||||
out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet;
|
||||
out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet;
|
||||
out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
Matrix mathMultiply(const Matrix* lhs, const Matrix* rhs)
|
||||
{
|
||||
Matrix m;
|
||||
|
||||
m.e11 = lhs->e11 * rhs->e11 + lhs->e12 * rhs->e21 + lhs->e13 * rhs->e31;
|
||||
m.e12 = lhs->e11 * rhs->e12 + lhs->e12 * rhs->e22 + lhs->e13 * rhs->e32;
|
||||
m.e13 = lhs->e11 * rhs->e13 + lhs->e12 * rhs->e23 + lhs->e13 * rhs->e33;
|
||||
|
||||
m.e21 = lhs->e21 * rhs->e11 + lhs->e22 * rhs->e21 + lhs->e23 * rhs->e31;
|
||||
m.e22 = lhs->e21 * rhs->e12 + lhs->e22 * rhs->e22 + lhs->e23 * rhs->e32;
|
||||
m.e23 = lhs->e21 * rhs->e13 + lhs->e22 * rhs->e23 + lhs->e23 * rhs->e33;
|
||||
|
||||
m.e31 = lhs->e31 * rhs->e11 + lhs->e32 * rhs->e21 + lhs->e33 * rhs->e31;
|
||||
m.e32 = lhs->e31 * rhs->e12 + lhs->e32 * rhs->e22 + lhs->e33 * rhs->e32;
|
||||
m.e33 = lhs->e31 * rhs->e13 + lhs->e32 * rhs->e23 + lhs->e33 * rhs->e33;
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
|
||||
void mathRotate(Matrix* m, float degree)
|
||||
{
|
||||
if (degree == 0.0f) return;
|
||||
|
||||
auto radian = degree / 180.0f * M_PI;
|
||||
auto cosVal = cosf(radian);
|
||||
auto sinVal = sinf(radian);
|
||||
|
||||
m->e12 = m->e11 * -sinVal;
|
||||
m->e11 *= cosVal;
|
||||
m->e21 = m->e22 * sinVal;
|
||||
m->e22 *= cosVal;
|
||||
}
|
||||
|
||||
|
||||
bool mathIdentity(const Matrix* m)
|
||||
{
|
||||
if (!mathEqual(m->e11, 1.0f) || !mathZero(m->e12) || !mathZero(m->e13) ||
|
||||
!mathZero(m->e21) || !mathEqual(m->e22, 1.0f) || !mathZero(m->e23) ||
|
||||
!mathZero(m->e31) || !mathZero(m->e32) || !mathEqual(m->e33, 1.0f)) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void mathMultiply(Point* pt, const Matrix* transform)
|
||||
{
|
||||
auto tx = pt->x * transform->e11 + pt->y * transform->e12 + transform->e13;
|
||||
auto ty = pt->x * transform->e21 + pt->y * transform->e22 + transform->e23;
|
||||
pt->x = tx;
|
||||
pt->y = ty;
|
||||
}
|
|
@ -34,6 +34,13 @@
|
|||
#define mathMax(x, y) (((x) > (y)) ? (x) : (y))
|
||||
|
||||
|
||||
bool mathInverse(const Matrix* m, Matrix* out);
|
||||
Matrix mathMultiply(const Matrix* lhs, const Matrix* rhs);
|
||||
void mathRotate(Matrix* m, float degree);
|
||||
bool mathIdentity(const Matrix* m);
|
||||
void mathMultiply(Point* pt, const Matrix* transform);
|
||||
|
||||
|
||||
static inline bool mathZero(float a)
|
||||
{
|
||||
return (fabsf(a) < FLT_EPSILON) ? true : false;
|
||||
|
@ -69,41 +76,6 @@ static inline bool mathSkewed(const Matrix* m)
|
|||
}
|
||||
|
||||
|
||||
static inline bool mathIdentity(const Matrix* m)
|
||||
{
|
||||
if (!mathEqual(m->e11, 1.0f) || !mathZero(m->e12) || !mathZero(m->e13) ||
|
||||
!mathZero(m->e21) || !mathEqual(m->e22, 1.0f) || !mathZero(m->e23) ||
|
||||
!mathZero(m->e31) || !mathZero(m->e32) || !mathEqual(m->e33, 1.0f)) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static inline bool mathInverse(const Matrix* m, Matrix* out)
|
||||
{
|
||||
auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) -
|
||||
m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) +
|
||||
m->e13 * (m->e21 * m->e32 - m->e22 * m->e31);
|
||||
|
||||
if (mathZero(det)) return false;
|
||||
|
||||
auto invDet = 1 / det;
|
||||
|
||||
out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet;
|
||||
out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet;
|
||||
out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet;
|
||||
out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet;
|
||||
out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet;
|
||||
out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet;
|
||||
out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet;
|
||||
out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet;
|
||||
out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static inline void mathIdentity(Matrix* m)
|
||||
{
|
||||
m->e11 = 1.0f;
|
||||
|
@ -132,48 +104,6 @@ static inline void mathTranslate(Matrix* m, float x, float y)
|
|||
}
|
||||
|
||||
|
||||
static inline void mathRotate(Matrix* m, float degree)
|
||||
{
|
||||
auto radian = degree / 180.0f * M_PI;
|
||||
auto cosVal = cosf(radian);
|
||||
auto sinVal = sinf(radian);
|
||||
|
||||
m->e12 = m->e11 * -sinVal;
|
||||
m->e11 *= cosVal;
|
||||
m->e21 = m->e22 * sinVal;
|
||||
m->e22 *= cosVal;
|
||||
}
|
||||
|
||||
|
||||
static inline void mathMultiply(Point* pt, const Matrix* transform)
|
||||
{
|
||||
auto tx = pt->x * transform->e11 + pt->y * transform->e12 + transform->e13;
|
||||
auto ty = pt->x * transform->e21 + pt->y * transform->e22 + transform->e23;
|
||||
pt->x = tx;
|
||||
pt->y = ty;
|
||||
}
|
||||
|
||||
|
||||
static inline Matrix mathMultiply(const Matrix* lhs, const Matrix* rhs)
|
||||
{
|
||||
Matrix m;
|
||||
|
||||
m.e11 = lhs->e11 * rhs->e11 + lhs->e12 * rhs->e21 + lhs->e13 * rhs->e31;
|
||||
m.e12 = lhs->e11 * rhs->e12 + lhs->e12 * rhs->e22 + lhs->e13 * rhs->e32;
|
||||
m.e13 = lhs->e11 * rhs->e13 + lhs->e12 * rhs->e23 + lhs->e13 * rhs->e33;
|
||||
|
||||
m.e21 = lhs->e21 * rhs->e11 + lhs->e22 * rhs->e21 + lhs->e23 * rhs->e31;
|
||||
m.e22 = lhs->e21 * rhs->e12 + lhs->e22 * rhs->e22 + lhs->e23 * rhs->e32;
|
||||
m.e23 = lhs->e21 * rhs->e13 + lhs->e22 * rhs->e23 + lhs->e23 * rhs->e33;
|
||||
|
||||
m.e31 = lhs->e31 * rhs->e11 + lhs->e32 * rhs->e21 + lhs->e33 * rhs->e31;
|
||||
m.e32 = lhs->e31 * rhs->e12 + lhs->e32 * rhs->e22 + lhs->e33 * rhs->e32;
|
||||
m.e33 = lhs->e31 * rhs->e13 + lhs->e32 * rhs->e23 + lhs->e33 * rhs->e33;
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
|
||||
static inline Point operator-(const Point& lhs, const Point& rhs)
|
||||
{
|
||||
return {lhs.x - rhs.x, lhs.y - rhs.y};
|
||||
|
|
Loading…
Add table
Reference in a new issue