mirror of
https://github.com/thorvg/thorvg.git
synced 2025-06-13 11:36:25 +00:00
sw_engine: refactoring of the radial gradient rle rastering function
The translucent rastering function is split into 3 other (instead of if/else statement). An additional function is introduced to decide which one of the 3 should be called. This refactoring is done to preserve the convention used for all other rastering functs.
This commit is contained in:
parent
c2d6fc4fdd
commit
aeb10fafec
1 changed files with 99 additions and 72 deletions
|
@ -928,7 +928,7 @@ static bool _rasterOpaqueLinearGradientRle(SwSurface* surface, const SwRleData*
|
|||
|
||||
auto span = rle->spans;
|
||||
|
||||
for (uint32_t i = 0; i < rle->size; ++i) {
|
||||
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
|
||||
if (span->coverage == 255) {
|
||||
fillFetchLinear(fill, surface->buffer + span->y * surface->stride + span->x, span->y, span->x, span->len);
|
||||
} else {
|
||||
|
@ -939,7 +939,96 @@ static bool _rasterOpaqueLinearGradientRle(SwSurface* surface, const SwRleData*
|
|||
dst[i] = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(dst[i], ialpha);
|
||||
}
|
||||
}
|
||||
++span;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static bool _translucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
|
||||
{
|
||||
if (fill->radial.a < FLT_EPSILON) return false;
|
||||
|
||||
auto span = rle->spans;
|
||||
auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
|
||||
if (!buffer) return false;
|
||||
|
||||
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
|
||||
auto dst = &surface->buffer[span->y * surface->stride + span->x];
|
||||
fillFetchRadial(fill, buffer, span->y, span->x, span->len);
|
||||
if (span->coverage == 255) {
|
||||
for (uint32_t i = 0; i < span->len; ++i) {
|
||||
dst[i] = buffer[i] + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(buffer[i]));
|
||||
}
|
||||
} else {
|
||||
for (uint32_t i = 0; i < span->len; ++i) {
|
||||
auto tmp = ALPHA_BLEND(buffer[i], span->coverage);
|
||||
dst[i] = tmp + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static bool _translucentRadialGradientRleAlphaMask(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
|
||||
{
|
||||
if (fill->radial.a < FLT_EPSILON) return false;
|
||||
|
||||
auto span = rle->spans;
|
||||
auto cbuffer = surface->compositor->image.data;
|
||||
auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
|
||||
if (!buffer) return false;
|
||||
|
||||
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
|
||||
fillFetchRadial(fill, buffer, span->y, span->x, span->len);
|
||||
auto dst = &surface->buffer[span->y * surface->stride + span->x];
|
||||
auto cmp = &cbuffer[span->y * surface->stride + span->x];
|
||||
auto src = buffer;
|
||||
if (span->coverage == 255) {
|
||||
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
|
||||
auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
|
||||
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
} else {
|
||||
auto ialpha = 255 - span->coverage;
|
||||
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
|
||||
auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
|
||||
tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
|
||||
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static bool _translucentRadialGradientRleInvAlphaMask(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
|
||||
{
|
||||
if (fill->radial.a < FLT_EPSILON) return false;
|
||||
|
||||
auto span = rle->spans;
|
||||
auto cbuffer = surface->compositor->image.data;
|
||||
auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
|
||||
if (!buffer) return false;
|
||||
|
||||
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
|
||||
fillFetchRadial(fill, buffer, span->y, span->x, span->len);
|
||||
auto dst = &surface->buffer[span->y * surface->stride + span->x];
|
||||
auto cmp = &cbuffer[span->y * surface->stride + span->x];
|
||||
auto src = buffer;
|
||||
if (span->coverage == 255) {
|
||||
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
|
||||
auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
|
||||
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
} else {
|
||||
auto ialpha = 255 - span->coverage;
|
||||
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
|
||||
auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
|
||||
tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
|
||||
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -947,78 +1036,17 @@ static bool _rasterOpaqueLinearGradientRle(SwSurface* surface, const SwRleData*
|
|||
|
||||
static bool _rasterTranslucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
|
||||
{
|
||||
if (fill->radial.a < FLT_EPSILON) return false;
|
||||
|
||||
auto buf = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
|
||||
if (!buf) return false;
|
||||
|
||||
auto span = rle->spans;
|
||||
if (!rle) return false;
|
||||
|
||||
if (surface->compositor) {
|
||||
auto method = surface->compositor->method;
|
||||
auto cbuffer = surface->compositor->image.data;
|
||||
|
||||
if (method == CompositeMethod::AlphaMask) {
|
||||
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
|
||||
fillFetchRadial(fill, buf, span->y, span->x, span->len);
|
||||
auto dst = &surface->buffer[span->y * surface->stride + span->x];
|
||||
auto cmp = &cbuffer[span->y * surface->stride + span->x];
|
||||
auto src = buf;
|
||||
if (span->coverage == 255) {
|
||||
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
|
||||
auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
|
||||
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
} else {
|
||||
auto ialpha = 255 - span->coverage;
|
||||
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
|
||||
auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
|
||||
tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
|
||||
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
} else if (method == CompositeMethod::InvAlphaMask) {
|
||||
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
|
||||
fillFetchRadial(fill, buf, span->y, span->x, span->len);
|
||||
auto dst = &surface->buffer[span->y * surface->stride + span->x];
|
||||
auto cmp = &cbuffer[span->y * surface->stride + span->x];
|
||||
auto src = buf;
|
||||
if (span->coverage == 255) {
|
||||
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
|
||||
auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
|
||||
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
} else {
|
||||
auto ialpha = 255 - span->coverage;
|
||||
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
|
||||
auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
|
||||
tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
|
||||
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
if (surface->compositor->method == CompositeMethod::AlphaMask) {
|
||||
return _translucentRadialGradientRleAlphaMask(surface, rle, fill);
|
||||
}
|
||||
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
|
||||
return _translucentRadialGradientRleInvAlphaMask(surface, rle, fill);
|
||||
}
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < rle->size; ++i) {
|
||||
auto dst = &surface->buffer[span->y * surface->stride + span->x];
|
||||
fillFetchRadial(fill, buf, span->y, span->x, span->len);
|
||||
if (span->coverage == 255) {
|
||||
for (uint32_t i = 0; i < span->len; ++i) {
|
||||
dst[i] = buf[i] + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(buf[i]));
|
||||
}
|
||||
} else {
|
||||
for (uint32_t i = 0; i < span->len; ++i) {
|
||||
auto tmp = ALPHA_BLEND(buf[i], span->coverage);
|
||||
dst[i] = tmp + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(tmp));
|
||||
}
|
||||
}
|
||||
++span;
|
||||
}
|
||||
return true;
|
||||
return _translucentRadialGradientRle(surface, rle, fill);
|
||||
}
|
||||
|
||||
|
||||
|
@ -1031,7 +1059,7 @@ static bool _rasterOpaqueRadialGradientRle(SwSurface* surface, const SwRleData*
|
|||
|
||||
auto span = rle->spans;
|
||||
|
||||
for (uint32_t i = 0; i < rle->size; ++i) {
|
||||
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
|
||||
auto dst = &surface->buffer[span->y * surface->stride + span->x];
|
||||
if (span->coverage == 255) {
|
||||
fillFetchRadial(fill, dst, span->y, span->x, span->len);
|
||||
|
@ -1042,7 +1070,6 @@ static bool _rasterOpaqueRadialGradientRle(SwSurface* surface, const SwRleData*
|
|||
dst[i] = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(dst[i], ialpha);
|
||||
}
|
||||
}
|
||||
++span;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue