mirror of
https://github.com/thorvg/thorvg.git
synced 2025-07-26 08:09:14 +00:00
Merge "SvgLoader: Support arc_to draw" into tizen
This commit is contained in:
commit
d37cdaf57c
1 changed files with 183 additions and 10 deletions
|
@ -14,7 +14,7 @@ static char* _skipComma(const char* content)
|
|||
}
|
||||
|
||||
|
||||
static inline bool _parseNumber(char** content, float* number)
|
||||
static bool _parseNumber(char** content, float* number)
|
||||
{
|
||||
char* end = NULL;
|
||||
*number = strtof(*content, &end);
|
||||
|
@ -26,7 +26,7 @@ static inline bool _parseNumber(char** content, float* number)
|
|||
}
|
||||
|
||||
|
||||
static inline bool _parseLong(char** content, int* number)
|
||||
static bool _parseLong(char** content, int* number)
|
||||
{
|
||||
char* end = NULL;
|
||||
*number = strtol(*content, &end, 10) ? 1 : 0;
|
||||
|
@ -36,6 +36,183 @@ static inline bool _parseLong(char** content, int* number)
|
|||
return true;
|
||||
}
|
||||
|
||||
void _pathAppendArcTo(vector<PathCommand>* cmds, vector<Point>* pts, float* arr, Point* cur, Point* curCtl, float x, float y, float rx, float ry, float angle, bool largeArc, bool sweep)
|
||||
{
|
||||
float cxp, cyp, cx, cy;
|
||||
float sx, sy;
|
||||
float cosPhi, sinPhi;
|
||||
float dx2, dy2;
|
||||
float x1p, y1p;
|
||||
float x1p2, y1p2;
|
||||
float rx2, ry2;
|
||||
float lambda;
|
||||
float c;
|
||||
float at;
|
||||
float theta1, deltaTheta;
|
||||
float nat;
|
||||
float delta, bcp;
|
||||
float cosPhiRx, cosPhiRy;
|
||||
float sinPhiRx, sinPhiRy;
|
||||
float cosTheta1, sinTheta1;
|
||||
int segments, i;
|
||||
|
||||
//Some helpful stuff is available here:
|
||||
//http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
|
||||
sx = cur->x;
|
||||
sy = cur->y;
|
||||
|
||||
//If start and end points are identical, then no arc is drawn
|
||||
if ((fabs(x - sx) < (1.0f / 256.0f)) && (fabs(y - sy) < (1.0f / 256.0f))) return;
|
||||
|
||||
//Correction of out-of-range radii, see F6.6.1 (step 2)
|
||||
rx = fabs(rx);
|
||||
ry = fabs(ry);
|
||||
if ((rx < 0.5f) || (ry < 0.5f)) {
|
||||
Point p = {x, y};
|
||||
cmds->push_back(PathCommand::LineTo);
|
||||
pts->push_back(p);
|
||||
*cur = p;
|
||||
return;
|
||||
}
|
||||
|
||||
angle = angle * M_PI / 180.0f;
|
||||
cosPhi = cosf(angle);
|
||||
sinPhi = sinf(angle);
|
||||
dx2 = (sx - x) / 2.0f;
|
||||
dy2 = (sy - y) / 2.0f;
|
||||
x1p = cosPhi * dx2 + sinPhi * dy2;
|
||||
y1p = cosPhi * dy2 - sinPhi * dx2;
|
||||
x1p2 = x1p * x1p;
|
||||
y1p2 = y1p * y1p;
|
||||
rx2 = rx * rx;
|
||||
ry2 = ry * ry;
|
||||
lambda = (x1p2 / rx2) + (y1p2 / ry2);
|
||||
|
||||
//Correction of out-of-range radii, see F6.6.2 (step 4)
|
||||
if (lambda > 1.0f) {
|
||||
//See F6.6.3
|
||||
float lambdaRoot = sqrt(lambda);
|
||||
|
||||
rx *= lambdaRoot;
|
||||
ry *= lambdaRoot;
|
||||
//Update rx2 and ry2
|
||||
rx2 = rx * rx;
|
||||
ry2 = ry * ry;
|
||||
}
|
||||
|
||||
c = (rx2 * ry2) - (rx2 * y1p2) - (ry2 * x1p2);
|
||||
|
||||
//Check if there is no possible solution
|
||||
//(i.e. we can't do a square root of a negative value)
|
||||
if (c < 0.0f) {
|
||||
//Scale uniformly until we have a single solution
|
||||
//(see F6.2) i.e. when c == 0.0
|
||||
float scale = sqrt(1.0f - c / (rx2 * ry2));
|
||||
rx *= scale;
|
||||
ry *= scale;
|
||||
//Update rx2 and ry2
|
||||
rx2 = rx * rx;
|
||||
ry2 = ry * ry;
|
||||
|
||||
//Step 2 (F6.5.2) - simplified since c == 0.0
|
||||
cxp = 0.0f;
|
||||
cyp = 0.0f;
|
||||
//Step 3 (F6.5.3 first part) - simplified since cxp and cyp == 0.0
|
||||
cx = 0.0f;
|
||||
cy = 0.0f;
|
||||
} else {
|
||||
//Complete c calculation
|
||||
c = sqrt(c / ((rx2 * y1p2) + (ry2 * x1p2)));
|
||||
//Inverse sign if Fa == Fs
|
||||
if (largeArc == sweep) c = -c;
|
||||
|
||||
//Step 2 (F6.5.2)
|
||||
cxp = c * (rx * y1p / ry);
|
||||
cyp = c * (-ry * x1p / rx);
|
||||
|
||||
//Step 3 (F6.5.3 first part)
|
||||
cx = cosPhi * cxp - sinPhi * cyp;
|
||||
cy = sinPhi * cxp + cosPhi * cyp;
|
||||
}
|
||||
|
||||
//Step 3 (F6.5.3 second part) we now have the center point of the ellipse
|
||||
cx += (sx + x) / 2.0f;
|
||||
cy += (sy + y) / 2.0f;
|
||||
|
||||
//Sstep 4 (F6.5.4)
|
||||
//We dont' use arccos (as per w3c doc), see
|
||||
//http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/index.htm
|
||||
//Note: atan2 (0.0, 1.0) == 0.0
|
||||
at = atan2(((y1p - cyp) / ry), ((x1p - cxp) / rx));
|
||||
theta1 = (at < 0.0f) ? 2.0f * M_PI + at : at;
|
||||
|
||||
nat = atan2(((-y1p - cyp) / ry), ((-x1p - cxp) / rx));
|
||||
deltaTheta = (nat < at) ? 2.0f * M_PI - at + nat : nat - at;
|
||||
|
||||
if (sweep) {
|
||||
//Ensure delta theta < 0 or else add 360 degrees
|
||||
if (deltaTheta < 0.0f) deltaTheta += 2.0f * M_PI;
|
||||
} else {
|
||||
//Ensure delta theta > 0 or else substract 360 degrees
|
||||
if (deltaTheta > 0.0f) deltaTheta -= 2.0f * M_PI;
|
||||
}
|
||||
|
||||
//Add several cubic bezier to approximate the arc
|
||||
//(smaller than 90 degrees)
|
||||
//We add one extra segment because we want something
|
||||
//Smaller than 90deg (i.e. not 90 itself)
|
||||
segments = (int)(fabs(deltaTheta / M_PI_2)) + 1.0f;
|
||||
delta = deltaTheta / segments;
|
||||
|
||||
//http://www.stillhq.com/ctpfaq/2001/comp.text.pdf-faq-2001-04.txt (section 2.13)
|
||||
bcp = 4.0f / 3.0f * (1.0f - cos(delta / 2.0f)) / sin(delta / 2.0f);
|
||||
|
||||
cosPhiRx = cosPhi * rx;
|
||||
cosPhiRy = cosPhi * ry;
|
||||
sinPhiRx = sinPhi * rx;
|
||||
sinPhiRy = sinPhi * ry;
|
||||
|
||||
cosTheta1 = cos(theta1);
|
||||
sinTheta1 = sin(theta1);
|
||||
|
||||
for (i = 0; i < segments; ++i) {
|
||||
//End angle (for this segment) = current + delta
|
||||
float c1x, c1y, ex, ey, c2x, c2y;
|
||||
float theta2 = theta1 + delta;
|
||||
float cosTheta2 = cos(theta2);
|
||||
float sinTheta2 = sin(theta2);
|
||||
static Point p[3];
|
||||
|
||||
//First control point (based on start point sx,sy)
|
||||
c1x = sx - bcp * (cosPhiRx * sinTheta1 + sinPhiRy * cosTheta1);
|
||||
c1y = sy + bcp * (cosPhiRy * cosTheta1 - sinPhiRx * sinTheta1);
|
||||
|
||||
//End point (for this segment)
|
||||
ex = cx + (cosPhiRx * cosTheta2 - sinPhiRy * sinTheta2);
|
||||
ey = cy + (sinPhiRx * cosTheta2 + cosPhiRy * sinTheta2);
|
||||
|
||||
//Second control point (based on end point ex,ey)
|
||||
c2x = ex + bcp * (cosPhiRx * sinTheta2 + sinPhiRy * cosTheta2);
|
||||
c2y = ey + bcp * (sinPhiRx * sinTheta2 - cosPhiRy * cosTheta2);
|
||||
cmds->push_back(PathCommand::CubicTo);
|
||||
p[0] = {c1x, c1y};
|
||||
p[1] = {c2x, c2y};
|
||||
p[2] = {ex, ey};
|
||||
pts->push_back(p[0]);
|
||||
pts->push_back(p[1]);
|
||||
pts->push_back(p[2]);
|
||||
*curCtl = p[1];
|
||||
*cur = p[2];
|
||||
|
||||
//Next start point is the current end point (same for angle)
|
||||
sx = ex;
|
||||
sy = ey;
|
||||
theta1 = theta2;
|
||||
//Avoid recomputations
|
||||
cosTheta1 = cosTheta2;
|
||||
sinTheta1 = sinTheta2;
|
||||
}
|
||||
}
|
||||
|
||||
static int _numberCount(char cmd)
|
||||
{
|
||||
|
@ -170,12 +347,12 @@ static void _processCommand(vector<PathCommand>* cmds, vector<Point>* pts, char
|
|||
}
|
||||
case 'q':
|
||||
case 'Q': {
|
||||
tvg::Point p[3];
|
||||
Point p[3];
|
||||
float ctrl_x0 = (cur->x + 2 * arr[0]) * (1.0 / 3.0);
|
||||
float ctrl_y0 = (cur->y + 2 * arr[1]) * (1.0 / 3.0);
|
||||
float ctrl_x1 = (arr[2] + 2 * arr[0]) * (1.0 / 3.0);
|
||||
float ctrl_y1 = (arr[3] + 2 * arr[1]) * (1.0 / 3.0);
|
||||
cmds->push_back(tvg::PathCommand::CubicTo);
|
||||
cmds->push_back(PathCommand::CubicTo);
|
||||
p[0] = {ctrl_x0, ctrl_y0};
|
||||
p[1] = {ctrl_x1, ctrl_y1};
|
||||
p[2] = {arr[2], arr[3]};
|
||||
|
@ -217,12 +394,8 @@ static void _processCommand(vector<PathCommand>* cmds, vector<Point>* pts, char
|
|||
}
|
||||
case 'a':
|
||||
case 'A': {
|
||||
//TODO: Implement arc_to
|
||||
break;
|
||||
}
|
||||
case 'E':
|
||||
case 'e': {
|
||||
//TODO: Implement arc
|
||||
_pathAppendArcTo(cmds, pts, arr, cur, curCtl, arr[5], arr[6], arr[0], arr[1], arr[2], arr[3], arr[4]);
|
||||
*cur = {arr[5] ,arr[6]};
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
|
|
Loading…
Add table
Reference in a new issue