apis: promote beta apis to the official ones.

these apis are good to open in the next release.
This commit is contained in:
Hermet Park 2021-11-03 15:40:40 +09:00 committed by Hermet Park
parent 98e542e2f6
commit e2dd889e1a
2 changed files with 3 additions and 9 deletions

View file

@ -306,8 +306,6 @@ public:
* @return Result::Success when succeed, Result::InsufficientCondition otherwise.
*
* @note The bounding box doesn't indicate the actual drawing region. It's the smallest rectangle that encloses the object.
*
* @BETA_API
*/
Result bounds(float* x, float* y, float* w, float* h, bool transformed) const noexcept;
@ -410,8 +408,6 @@ public:
* @param[in] m The 3x3 augmented matrix.
*
* @return Result::Success when succeed, Result::FailedAllocation otherwise.
*
* @BETA_API
*/
Result transform(const Matrix& m) noexcept;
@ -437,8 +433,6 @@ public:
* In case no transformation was applied, the identity matrix is returned.
*
* @retval The augmented transformation matrix.
*
* @BETA_API
*/
Matrix transform() const noexcept;

View file

@ -839,7 +839,7 @@ TVG_EXPORT Tvg_Paint* tvg_paint_duplicate(Tvg_Paint* paint);
/*!
* \brief Gets the axis-aligned bounding box of the Tvg_Paint object. (BETA_API)
* \brief Gets the axis-aligned bounding box of the Tvg_Paint object.
*
* \param[in] paint The Tvg_Paint object of which to get the bounds.
* \param[out] x The x coordinate of the upper left corner of the object.
@ -1694,7 +1694,7 @@ TVG_EXPORT Tvg_Result tvg_gradient_get_spread(const Tvg_Gradient* grad, Tvg_Stro
/*!
* \brief Sets the matrix of the affine transformation for the gradient object. (BETA_API)
* \brief Sets the matrix of the affine transformation for the gradient object.
*
* The augmented matrix of the transformation is expected to be given.
*
@ -1710,7 +1710,7 @@ TVG_EXPORT Tvg_Result tvg_gradient_set_transform(Tvg_Gradient* grad, const Tvg_M
/*!
* \brief Gets the matrix of the affine transformation of the gradient object. (BETA_API)
* \brief Gets the matrix of the affine transformation of the gradient object.
*
* In case no transformation was applied, the identity matrix is set.
*