sw_engine raster: code refactoring

unify several function paramters with one structure.
This commit is contained in:
Hermet Park 2021-11-10 19:21:51 +09:00 committed by Hermet Park
parent 205e463160
commit f9a7df7a10

View file

@ -235,13 +235,13 @@ static bool _rasterSolidRle(SwSurface* surface, const SwRleData* rle, uint32_t c
/* Image */
/************************************************************************/
static bool _translucentImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity)
static bool _translucentImageRle(SwSurface* surface, const SwRleData* rle, const SwImage* image, uint32_t opacity)
{
auto span = rle->spans;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto src = img + span->x + span->y * w; //TODO: need to use image's stride
auto src = image->data + span->x + span->y * image->w; //TODO: need to use image's stride
auto alpha = ALPHA_MULTIPLY(span->coverage, opacity);
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++src) {
*src = ALPHA_BLEND(*src, alpha);
@ -252,25 +252,28 @@ static bool _translucentImageRle(SwSurface* surface, const SwRleData* rle, uint3
}
static bool _rasterTranslucentImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity)
static bool _rasterTranslucentImageRle(SwSurface* surface, const SwRleData* rle, const SwImage* image, uint32_t opacity)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentImageRleAlphaMask()");
// return _translucentImageRleAlphaMask(surface, rle, img, w, h, opacity);
// return _translucentImageRleAlphaMask(surface, rle, image, opacity);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentImageRleInvAlphaMask()");
// return _translucentImageRleInvAlphaMask(surface, rle, img, w, h, opacity);
// return _translucentImageRleInvAlphaMask(surface, rle, image, opacity);
}
}
return _translucentImageRle(surface, rle, img, w, h, opacity);
return _translucentImageRle(surface, rle, image, opacity);
}
static bool _translucentImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const Matrix* itransform)
static bool _translucentImageRle(SwSurface* surface, const SwRleData* rle, const SwImage* image, uint32_t opacity, const Matrix* itransform)
{
auto span = rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
@ -289,25 +292,29 @@ static bool _translucentImageRle(SwSurface* surface, const SwRleData* rle, uint3
}
static bool _rasterTranslucentImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const Matrix* itransform)
static bool _rasterTranslucentImageRle(SwSurface* surface, const SwRleData* rle, const SwImage* image, uint32_t opacity, const Matrix* itransform)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentImageRleAlphaMask()");
// return _translucentImageRleAlphaMask(surface, rle, img, w, h, opacity, itransform);
// return _translucentImageRleAlphaMask(surface, rle, image, opacity, itransform);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentImageRleInvAlphaMask()");
// return _translucentImageRleInvAlphaMask(surface, rle, img, w, h, opacity, itransform);
// return _translucentImageRleInvAlphaMask(surface, rle, image, opacity, itransform);
}
}
return _translucentImageRle(surface, rle, img, w, h, opacity, itransform);
return _translucentImageRle(surface, rle, image, opacity, itransform);
}
static bool _translucentUpScaleImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const Matrix* itransform)
static bool _translucentUpScaleImageRle(SwSurface* surface, const SwRleData* rle, const SwImage* image, uint32_t opacity, const Matrix* itransform)
{
auto span = rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
auto ey2 = span->y * itransform->e22 + itransform->e23;
@ -329,27 +336,32 @@ static bool _translucentUpScaleImageRle(SwSurface* surface, const SwRleData* rle
}
static bool _rasterTranslucentUpScaleImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const Matrix* itransform)
static bool _rasterTranslucentUpScaleImageRle(SwSurface* surface, const SwRleData* rle, const SwImage* image, uint32_t opacity, const Matrix* itransform)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentUpScaleImageRleAlphaMask()");
// return _translucentUpScaleImageRleAlphaMask(surface, rle, img, w, h, opacity, itransform);
// return _translucentUpScaleImageRleAlphaMask(surface, rle, image, opacity, itransform);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentUpScaleImageRleInvAlphaMask()");
// return _translucentUpScaleImageRleInvAlphaMask(surface, rle, img, w, h, opacity, itransform);
// return _translucentUpScaleImageRleInvAlphaMask(surface, rle, image, opacity, itransform);
}
}
return _translucentUpScaleImageRle(surface, rle, img, w, h, opacity, itransform);
return _translucentUpScaleImageRle(surface, rle, image, opacity, itransform);
}
static bool _translucentDownScaleImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const Matrix* itransform, float scale)
static bool _translucentDownScaleImageRle(SwSurface* surface, const SwRleData* rle, const SwImage* image, uint32_t opacity, const Matrix* itransform, float scale)
{
uint32_t halfScaling = static_cast<uint32_t>(0.5f / scale);
if (halfScaling == 0) halfScaling = 1;
auto span = rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto halfScale = static_cast<uint32_t>(0.5f / scale);
if (halfScale == 0) halfScale = 1;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
auto ey2 = span->y * itransform->e22 + itransform->e23;
@ -360,8 +372,8 @@ static bool _translucentDownScaleImageRle(SwSurface* surface, const SwRleData* r
auto rY = static_cast<uint32_t>(roundf((span->x + x) * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX < halfScaling || rY < halfScaling || rX >= w - halfScaling || rY >= h - halfScaling) src = ALPHA_BLEND(img[rY * w + rX], alpha); //TODO: need to use image's stride
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScaling), alpha); //TODO: need to use image's stride
if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rY * w + rX], alpha); //TODO: need to use image's stride
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScale), alpha); //TODO: need to use image's stride
*dst = src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(src));
}
}
@ -369,29 +381,29 @@ static bool _translucentDownScaleImageRle(SwSurface* surface, const SwRleData* r
}
static bool _rasterTranslucentDownScaleImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const Matrix* itransform, float scale)
static bool _rasterTranslucentDownScaleImageRle(SwSurface* surface, const SwRleData* rle, const SwImage* image, uint32_t opacity, const Matrix* itransform, float scale)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentDownScaleImageRleAlphaMask()");
// return _translucentDownScaleImageRleAlphaMask(surface, rle, img, w, h, opacity, itransform, scale);
// return _translucentDownScaleImageRleAlphaMask(surface, rle, image, opacity, itransform, scale);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
TVGERR("SW_ENGINE", "Missing Implementation _translucentDownScaleImageRleInvAlphaMask()");
// return _translucentDownScaleImageRleInvAlphaMask(surface, rle, img, w, h, opacity, itransform, scale);
// return _translucentDownScaleImageRleInvAlphaMask(surface, rle, image, opacity, itransform, scale);
}
}
return _translucentDownScaleImageRle(surface, rle, img, w, h, opacity, itransform, scale);
return _translucentDownScaleImageRle(surface, rle, image, opacity, itransform, scale);
}
static bool _rasterImageRle(SwSurface* surface, SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h)
static bool _rasterImageRle(SwSurface* surface, SwRleData* rle, const SwImage* image)
{
auto span = rle->spans;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto src = img + span->x + span->y * w; //TODO: need to use image's stride
auto src = image->data + span->x + span->y * image->w; //TODO: need to use image's stride
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++src) {
*src = ALPHA_BLEND(*src, span->coverage);
*dst = *src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(*src));
@ -401,9 +413,12 @@ static bool _rasterImageRle(SwSurface* surface, SwRleData* rle, uint32_t *img, u
}
static bool _rasterImageRle(SwSurface* surface, SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, const Matrix* itransform)
static bool _rasterImageRle(SwSurface* surface, SwRleData* rle, const SwImage* image, const Matrix* itransform)
{
auto span = rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
@ -421,9 +436,12 @@ static bool _rasterImageRle(SwSurface* surface, SwRleData* rle, uint32_t *img, u
}
static bool _rasterUpScaleImageRle(SwSurface* surface, SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, const Matrix* itransform)
static bool _rasterUpScaleImageRle(SwSurface* surface, SwRleData* rle, const SwImage* image, const Matrix* itransform)
{
auto span = rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
@ -445,11 +463,15 @@ static bool _rasterUpScaleImageRle(SwSurface* surface, SwRleData* rle, uint32_t
}
static bool _rasterDownScaleImageRle(SwSurface* surface, SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, const Matrix* itransform, float scale)
static bool _rasterDownScaleImageRle(SwSurface* surface, SwRleData* rle, const SwImage* image, const Matrix* itransform, float scale)
{
uint32_t halfScaling = static_cast<uint32_t>(0.5f / scale);
if (halfScaling == 0) halfScaling = 1;
auto span = rle->spans;
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto halfScale = static_cast<uint32_t>(0.5f / scale);
if (halfScale == 0) halfScale = 1;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto ey1 = span->y * itransform->e12 + itransform->e13;
@ -460,8 +482,8 @@ static bool _rasterDownScaleImageRle(SwSurface* surface, SwRleData* rle, uint32_
auto rY = static_cast<uint32_t>(roundf((span->x + x) * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX < halfScaling || rY < halfScaling || rX >= w - halfScaling || rY >= h - halfScaling) src = ALPHA_BLEND(img[rY * w + rX], span->coverage); //TODO: need to use image's stride
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScaling), span->coverage); //TODO: need to use image's stride
if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rY * w + rX], span->coverage); //TODO: need to use image's stride
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScale), span->coverage); //TODO: need to use image's stride
*dst = src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(src));
}
}
@ -469,8 +491,11 @@ static bool _rasterDownScaleImageRle(SwSurface* surface, SwRleData* rle, uint32_
}
static bool _translucentImage(SwSurface* surface, const uint32_t *img, uint32_t w, TVG_UNUSED uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform)
static bool _translucentImage(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform)
{
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x];
for (auto y = region.min.y; y < region.max.y; ++y) {
@ -490,10 +515,13 @@ static bool _translucentImage(SwSurface* surface, const uint32_t *img, uint32_t
}
static bool _translucentImageMask(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform, uint32_t (*blendMethod)(uint32_t rgba))
static bool _translucentImageMask(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform, uint32_t (*blendMethod)(uint32_t rgba))
{
TVGLOG("SW_ENGINE", "Transformed Image AlphaMask / Inverse Alpha Mask Composition");
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x];
auto cbuffer = &surface->compositor->image.data[region.min.y * surface->stride + region.min.x];
@ -516,22 +544,25 @@ static bool _translucentImageMask(SwSurface* surface, const uint32_t *img, uint3
}
static bool _rasterTranslucentImage(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform)
static bool _rasterTranslucentImage(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
return _translucentImageMask(surface, img, w, h, opacity, region, itransform, surface->blender.alpha);
return _translucentImageMask(surface, image, opacity, region, itransform, surface->blender.alpha);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
return _translucentImageMask(surface, img, w, h, opacity, region, itransform, surface->blender.ialpha);
return _translucentImageMask(surface, image, opacity, region, itransform, surface->blender.ialpha);
}
}
return _translucentImage(surface, img, w, h, opacity, region, itransform);
return _translucentImage(surface, image, opacity, region, itransform);
}
static bool _translucentUpScaleImage(SwSurface* surface, const uint32_t *img, uint32_t w, TVG_UNUSED uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform)
static bool _translucentUpScaleImage(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform)
{
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x];
for (auto y = region.min.y; y < region.max.y; ++y) {
@ -555,10 +586,13 @@ static bool _translucentUpScaleImage(SwSurface* surface, const uint32_t *img, ui
}
static bool _translucentUpScaleImageMask(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform, uint32_t (*blendMethod)(uint32_t rgba))
static bool _translucentUpScaleImageMask(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform, uint32_t (*blendMethod)(uint32_t rgba))
{
TVGLOG("SW_ENGINE", "Transformed Image Alpha Mask / Inverse Alpha Mask Composition");
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x];
auto cbuffer = &surface->compositor->image.data[region.min.y * surface->stride + region.min.x];
@ -585,24 +619,29 @@ static bool _translucentUpScaleImageMask(SwSurface* surface, const uint32_t *img
}
static bool _rasterTranslucentUpScaleImage(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform)
static bool _rasterTranslucentUpScaleImage(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
return _translucentUpScaleImageMask(surface, img, w, h, opacity, region, itransform, surface->blender.alpha);
return _translucentUpScaleImageMask(surface, image, opacity, region, itransform, surface->blender.alpha);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
return _translucentUpScaleImageMask(surface, img, w, h, opacity, region, itransform, surface->blender.ialpha);
return _translucentUpScaleImageMask(surface, image, opacity, region, itransform, surface->blender.ialpha);
}
}
return _translucentUpScaleImage(surface, img, w, h, opacity, region, itransform);
return _translucentUpScaleImage(surface, image, opacity, region, itransform);
}
static bool _translucentDownScaleImage(SwSurface* surface, const uint32_t *img, uint32_t w, TVG_UNUSED uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform, float scale)
static bool _translucentDownScaleImage(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform, float scale)
{
uint32_t halfScaling = static_cast<uint32_t>(0.5f / scale);
if (halfScaling == 0) halfScaling = 1;
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto halfScale = static_cast<uint32_t>(0.5f / scale);
if (halfScale == 0) halfScale = 1;
auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x];
for (auto y = region.min.y; y < region.max.y; ++y) {
@ -614,8 +653,8 @@ static bool _translucentDownScaleImage(SwSurface* surface, const uint32_t *img,
auto rY = static_cast<uint32_t>(roundf(x * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX < halfScaling || rY < halfScaling || rX >= w - halfScaling || rY >= h - halfScaling) src = ALPHA_BLEND(img[rX + (rY * w)], opacity);
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScaling), opacity);
if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rX + (rY * w)], opacity);
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScale), opacity);
*dst = src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(src));
}
dbuffer += surface->stride;
@ -624,11 +663,16 @@ static bool _translucentDownScaleImage(SwSurface* surface, const uint32_t *img,
}
static bool _translucentDownScaleImageMask(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform, float scale, uint32_t (*blendMethod)(uint32_t rgba))
static bool _translucentDownScaleImageMask(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform, float scale, uint32_t (*blendMethod)(uint32_t rgba))
{
TVGLOG("SW_ENGINE", "Transformed Image Alpha Mask / Inverse Alpha Mask Composition");
uint32_t halfScaling = static_cast<uint32_t>(0.5f / scale);
if (halfScaling == 0) halfScaling = 1;
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto halfScale = static_cast<uint32_t>(0.5f / scale);
if (halfScale == 0) halfScale = 1;
auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x];
auto cbuffer = &surface->compositor->image.data[region.min.y * surface->stride + region.min.x];
@ -643,8 +687,8 @@ static bool _translucentDownScaleImageMask(SwSurface* surface, const uint32_t *i
auto rY = static_cast<uint32_t>(roundf(x * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX < halfScaling || rY < halfScaling || rX >= w - halfScaling || rY >= h - halfScaling) src = ALPHA_BLEND(img[rX + (rY * w)], ALPHA_MULTIPLY(opacity, blendMethod(*cmp))); //TODO: need to use image's stride
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScaling), ALPHA_MULTIPLY(opacity, blendMethod(*cmp))); //TODO: need to use image's stride
if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rX + (rY * w)], ALPHA_MULTIPLY(opacity, blendMethod(*cmp))); //TODO: need to use image's stride
else src = ALPHA_BLEND(_average2Nx2NPixel(surface, img, w, h, rX, rY, halfScale), ALPHA_MULTIPLY(opacity, blendMethod(*cmp))); //TODO: need to use image's stride
*dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src));
}
dbuffer += surface->stride;
@ -654,24 +698,24 @@ static bool _translucentDownScaleImageMask(SwSurface* surface, const uint32_t *i
}
static bool _rasterTranslucentDownScaleImage(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* itransform, float scale)
static bool _rasterTranslucentDownScaleImage(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, const Matrix* itransform, float scale)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
return _translucentDownScaleImageMask(surface, img, w, h, opacity, region, itransform, scale, surface->blender.alpha);
return _translucentDownScaleImageMask(surface, image, opacity, region, itransform, scale, surface->blender.alpha);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
return _translucentDownScaleImageMask(surface, img, w, h, opacity, region, itransform, scale, surface->blender.ialpha);
return _translucentDownScaleImageMask(surface, image, opacity, region, itransform, scale, surface->blender.ialpha);
}
}
return _translucentDownScaleImage(surface, img, w, h, opacity, region, itransform, scale);
return _translucentDownScaleImage(surface, image, opacity, region, itransform, scale);
}
static bool _translucentImage(SwSurface* surface, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region)
static bool _translucentImage(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region)
{
auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x];
auto sbuffer = img + region.min.x + region.min.y * w; //TODO: need to use image's stride
auto sbuffer = image->data + region.min.x + region.min.y * image->w; //TODO: need to use image's stride
for (auto y = region.min.y; y < region.max.y; ++y) {
auto dst = dbuffer;
@ -681,13 +725,13 @@ static bool _translucentImage(SwSurface* surface, uint32_t *img, uint32_t w, uin
*dst = p + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(p));
}
dbuffer += surface->stride;
sbuffer += w; //TODO: need to use image's stride
sbuffer += image->w; //TODO: need to use image's stride
}
return true;
}
static bool _translucentImageMask(SwSurface* surface, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, uint32_t (*blendMethod)(uint32_t rgba))
static bool _translucentImageMask(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region, uint32_t (*blendMethod)(uint32_t rgba))
{
auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x;
auto h2 = static_cast<uint32_t>(region.max.y - region.min.y);
@ -695,7 +739,7 @@ static bool _translucentImageMask(SwSurface* surface, uint32_t *img, uint32_t w,
TVGLOG("SW_ENGINE", "Image Alpha Mask / Inverse Alpha Mask Composition");
auto sbuffer = img + (region.min.y * w) + region.min.x;
auto sbuffer = image->data + (region.min.y * image->w) + region.min.x;
auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; //compositor buffer
for (uint32_t y = 0; y < h2; ++y) {
@ -708,30 +752,30 @@ static bool _translucentImageMask(SwSurface* surface, uint32_t *img, uint32_t w,
}
buffer += surface->stride;
cbuffer += surface->stride;
sbuffer += w; //TODO: need to use image's stride
sbuffer += image->w; //TODO: need to use image's stride
}
return true;
}
static bool _rasterTranslucentImage(SwSurface* surface, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region)
static bool _rasterTranslucentImage(SwSurface* surface, const SwImage* image, uint32_t opacity, const SwBBox& region)
{
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
return _translucentImageMask(surface, img, w, h, opacity, region, surface->blender.alpha);
return _translucentImageMask(surface, image, opacity, region, surface->blender.alpha);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
return _translucentImageMask(surface, img, w, h, opacity, region, surface->blender.ialpha);
return _translucentImageMask(surface, image, opacity, region, surface->blender.ialpha);
}
}
return _translucentImage(surface, img, w, h, opacity, region);
return _translucentImage(surface, image, opacity, region);
}
static bool _rasterImage(SwSurface* surface, uint32_t *img, uint32_t w, TVG_UNUSED uint32_t h, const SwBBox& region)
static bool _rasterImage(SwSurface* surface, const SwImage* image, const SwBBox& region)
{
auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x];
auto sbuffer = img + region.min.x + region.min.y * w; //TODO: need to use image's stride
auto sbuffer = image->data + region.min.x + region.min.y * image->w; //TODO: need to use image's stride
for (auto y = region.min.y; y < region.max.y; ++y) {
auto dst = dbuffer;
@ -740,14 +784,18 @@ static bool _rasterImage(SwSurface* surface, uint32_t *img, uint32_t w, TVG_UNUS
*dst = *src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(*src));
}
dbuffer += surface->stride;
sbuffer += w; //TODO: need to use image's stride
sbuffer += image->w; //TODO: need to use image's stride
}
return true;
}
static bool _rasterImage(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, const SwBBox& region, const Matrix* itransform)
static bool _rasterImage(SwSurface* surface, const SwImage* image, const SwBBox& region, const Matrix* itransform)
{
auto img = image->data;
auto w = image->w;
auto h = image->h;
for (auto y = region.min.y; y < region.max.y; ++y) {
auto dst = &surface->buffer[y * surface->stride + region.min.x];
auto ey1 = y * itransform->e12 + itransform->e13;
@ -764,8 +812,12 @@ static bool _rasterImage(SwSurface* surface, const uint32_t *img, uint32_t w, ui
}
static bool _rasterUpScaleImage(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, const SwBBox& region, const Matrix* itransform)
static bool _rasterUpScaleImage(SwSurface* surface, const SwImage* image, const SwBBox& region, const Matrix* itransform)
{
auto img = image->data;
auto w = image->w;
auto h = image->h;
for (auto y = region.min.y; y < region.max.y; ++y) {
auto dst = &surface->buffer[y * surface->stride + region.min.x];
auto ey1 = y * itransform->e12 + itransform->e13;
@ -786,11 +838,15 @@ static bool _rasterUpScaleImage(SwSurface* surface, const uint32_t *img, uint32_
}
static bool _rasterDownScaleImage(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, const SwBBox& region, const Matrix* itransform, float scale)
static bool _rasterDownScaleImage(SwSurface* surface, const SwImage* image, const SwBBox& region, const Matrix* itransform, float scale)
{
auto halfScaling = static_cast<uint32_t>(0.5f / scale);
auto img = image->data;
auto w = image->w;
auto h = image->h;
auto halfScale = static_cast<uint32_t>(0.5f / scale);
if (halfScale == 0) halfScale = 1;
if (halfScaling == 0) halfScaling = 1;
for (auto y = region.min.y; y < region.max.y; ++y) {
auto dst = &surface->buffer[y * surface->stride + region.min.x];
auto ey1 = y * itransform->e12 + itransform->e13;
@ -800,8 +856,8 @@ static bool _rasterDownScaleImage(SwSurface* surface, const uint32_t *img, uint3
auto rY = static_cast<uint32_t>(roundf(x * itransform->e21 + ey2));
if (rX >= w || rY >= h) continue;
uint32_t src;
if (rX < halfScaling || rY < halfScaling || rX >= w - halfScaling || rY >= h - halfScaling) src = img[rX + (rY * w)];
else src = _average2Nx2NPixel(surface, img, w, h, rX, rY, halfScaling);
if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = img[rX + (rY * w)];
else src = _average2Nx2NPixel(surface, img, w, h, rX, rY, halfScale);
*dst = src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(src));
}
}
@ -1357,37 +1413,37 @@ bool rasterImage(SwSurface* surface, SwImage* image, const Matrix* transform, co
if (image->rle) {
if (transformed) {
if (translucent) {
if (fabsf(scale - 1.0f) <= FLT_EPSILON) return _rasterTranslucentImageRle(surface, image->rle, image->data, image->w, image->h, opacity, &itransform);
else if (scale < downScaleTolerance) return _rasterTranslucentDownScaleImageRle(surface, image->rle, image->data, image->w, image->h, opacity, &itransform, scale);
else return _rasterTranslucentUpScaleImageRle(surface, image->rle, image->data, image->w, image->h, opacity, &itransform);
if (fabsf(scale - 1.0f) <= FLT_EPSILON) return _rasterTranslucentImageRle(surface, image->rle, image, opacity, &itransform);
else if (scale < downScaleTolerance) return _rasterTranslucentDownScaleImageRle(surface, image->rle, image, opacity, &itransform, scale);
else return _rasterTranslucentUpScaleImageRle(surface, image->rle, image, opacity, &itransform);
} else {
if (fabsf(scale - 1.0f) <= FLT_EPSILON) return _rasterImageRle(surface, image->rle, image->data, image->w, image->h, &itransform);
else if (scale < downScaleTolerance) return _rasterDownScaleImageRle(surface, image->rle, image->data, image->w, image->h, &itransform, scale);
else return _rasterUpScaleImageRle(surface, image->rle, image->data, image->w, image->h, &itransform);
if (fabsf(scale - 1.0f) <= FLT_EPSILON) return _rasterImageRle(surface, image->rle, image, &itransform);
else if (scale < downScaleTolerance) return _rasterDownScaleImageRle(surface, image->rle, image, &itransform, scale);
else return _rasterUpScaleImageRle(surface, image->rle, image, &itransform);
}
//Fast track
//OPTIMIZE ME: Support non transformed image. Only shifted image can use these routines.
} else {
if (translucent) return _rasterTranslucentImageRle(surface, image->rle, image->data, image->w, image->h, opacity);
return _rasterImageRle(surface, image->rle, image->data, image->w, image->h);
if (translucent) return _rasterTranslucentImageRle(surface, image->rle, image, opacity);
return _rasterImageRle(surface, image->rle, image);
}
//Whole Image
} else {
if (transformed) {
if (translucent) {
if (fabsf(scale - 1.0f) <= FLT_EPSILON) return _rasterTranslucentImage(surface, image->data, image->w, image->h, opacity, bbox, &itransform);
else if (scale < downScaleTolerance) return _rasterTranslucentDownScaleImage(surface, image->data, image->w, image->h, opacity, bbox, &itransform, scale);
else return _rasterTranslucentUpScaleImage(surface, image->data, image->w, image->h, opacity, bbox, &itransform);
if (fabsf(scale - 1.0f) <= FLT_EPSILON) return _rasterTranslucentImage(surface, image, opacity, bbox, &itransform);
else if (scale < downScaleTolerance) return _rasterTranslucentDownScaleImage(surface, image, opacity, bbox, &itransform, scale);
else return _rasterTranslucentUpScaleImage(surface, image, opacity, bbox, &itransform);
} else {
if (fabsf(scale - 1.0f) <= FLT_EPSILON) return _rasterImage(surface, image->data, image->w, image->h, bbox, &itransform);
else if (scale < downScaleTolerance) return _rasterDownScaleImage(surface, image->data, image->w, image->h, bbox, &itransform, scale);
else return _rasterUpScaleImage(surface, image->data, image->w, image->h, bbox, &itransform);
if (fabsf(scale - 1.0f) <= FLT_EPSILON) return _rasterImage(surface, image, bbox, &itransform);
else if (scale < downScaleTolerance) return _rasterDownScaleImage(surface, image, bbox, &itransform, scale);
else return _rasterUpScaleImage(surface, image, bbox, &itransform);
}
//Fast track
//OPTIMIZE ME: Support non transformed image. Only shifted image can use these routines.
} else {
//OPTIMIZE ME: Support non transformed image. Only shifted image can use these routines.
if (translucent) return _rasterTranslucentImage(surface, image->data, image->w, image->h, opacity, bbox);
return _rasterImage(surface, image->data, image->w, image->h, bbox);
if (translucent) return _rasterTranslucentImage(surface, image, opacity, bbox);
return _rasterImage(surface, image, bbox);
}
}
}