common shape: implement appendCircle body.

Change-Id: Ib8507366f84532db3119f04c8d55e0d4e8206f9f
This commit is contained in:
Hermet Park 2020-04-25 21:40:40 +09:00
parent 37d34eeb19
commit fe9c2c9162
8 changed files with 293 additions and 22 deletions

View file

@ -92,7 +92,7 @@ public:
int update(RenderMethod* engine) noexcept override;
int clear() noexcept;
int appendRect(float x, float y, float w, float h, float radius) noexcept;
int appendRect(float x, float y, float w, float h, float cornerRadius) noexcept;
int appendCircle(float cx, float cy, float radius) noexcept;
int fill(size_t r, size_t g, size_t b, size_t a) noexcept;

View file

@ -1,6 +1,6 @@
project('tizenvg',
'cpp',
default_options : ['buildtype=debugoptimized', 'werror=false', 'cpp_std=c++14'],
default_options : ['buildtype=debug', 'werror=false', 'cpp_std=c++14'],
version : '0.1.0',
license : 'Apache-2.0')

View file

@ -417,7 +417,7 @@ static void _lineTo(RleWorker& rw, const SwPoint& to)
auto py = diff.y * ONE_PIXEL;
//left
if (prod <= 0 && prod - px) {
if (prod <= 0 && prod - px > 0) {
f2 = {0, SW_UDIV(-prod, -dx_r)};
prod -= py;
rw.cover += (f2.y - f1.y);
@ -557,9 +557,7 @@ static void _cubicTo(RleWorker& rw, const SwPoint& ctrl1, const SwPoint& ctrl2,
draw:
_lineTo(rw, arc[0]);
if (arc == rw.bezStack) return;
arc -= 3;
}
}
@ -612,7 +610,7 @@ static bool _decomposeOutline(RleWorker& rw)
}
//Close the contour with a line segment?
//if (!lineTo(rw, outline->pts[first]));
//_lineTo(rw, UPSCALE(outline->pts[first]));
close:
first = last + 1;
}
@ -680,7 +678,7 @@ SwRleData* rleRender(const SwShape& sdata)
rw.rle = reinterpret_cast<SwRleData*>(calloc(1, sizeof(SwRleData)));
assert(rw.rle);
//printf("bufferSize = %d, bbox(%f %f %f %f), exCnt(%f), eyCnt(%f), bandSize(%d)\n", rw.bufferSize, rw.exMin, rw.eyMin, rw.exMax, rw.eyMax, rw.exCnt, rw.eyCnt, rw.bandSize);
//printf("bufferSize = %d, bbox(%d %d %d %d), exCnt(%f), eyCnt(%f), bandSize(%d)\n", rw.bufferSize, rw.cellMin.x, rw.cellMin.y, rw.cellMax.x, rw.cellMax.y, rw.cellXCnt, rw.cellYCnt, rw.bandSize);
//Generate RLE
Band bands[BAND_SIZE];

View file

@ -21,6 +21,7 @@
#include <cassert>
#include <vector>
#include <math.h>
#include <float.h>
#include "tizenvg.h"
#include "tvgRenderCommon.h"

View file

@ -136,21 +136,28 @@ int ShapeNode::pathCoords(const Point** pts) const noexcept
int ShapeNode::appendCircle(float cx, float cy, float radius) noexcept
{
auto impl = pImpl.get();
assert(impl);
impl->path->reserve(5, 13); //decide size experimentally (move + curve * 4)
impl->path->arcTo(cx - radius, cy - radius, 2 * radius, 2 * radius, 0, 360);
impl->path->close();
return 0;
}
int ShapeNode::appendRect(float x, float y, float w, float h, float radius) noexcept
int ShapeNode::appendRect(float x, float y, float w, float h, float cornerRadius) noexcept
{
auto impl = pImpl.get();
assert(impl);
//clamping radius by minimum size
//clamping cornerRadius by minimum size
auto min = (w < h ? w : h) * 0.5f;
if (radius > min) radius = min;
if (cornerRadius > min) cornerRadius = min;
//rectangle
if (radius == 0) {
if (cornerRadius == 0) {
impl->path->reserve(5, 4);
impl->path->moveTo(x, y);
impl->path->lineTo(x + w, y);
@ -158,8 +165,8 @@ int ShapeNode::appendRect(float x, float y, float w, float h, float radius) noex
impl->path->lineTo(x, y + h);
impl->path->close();
//circle
} else if (w == h && radius * 2 == w) {
appendCircle(x + (w * 0.5f), y + (h * 0.5f), radius);
} else if (w == h && cornerRadius * 2 == w) {
return appendCircle(x + (w * 0.5f), y + (h * 0.5f), cornerRadius);
} else {
//...
}

View file

@ -23,6 +23,14 @@
/* Internal Class Implementation */
/************************************************************************/
constexpr auto PATH_KAPPA = 0.552284f;
struct ShapePath;
static float _arcAngle(float angle);
static int _arcToCubic(ShapePath& path, const Point* pts, size_t ptsCnt);
static void _findEllipseCoords(float x, float y, float w, float h, float startAngle, float sweepAngle, Point& ptStart, Point& ptEnd);
struct ShapePath
{
PathCommand* cmds = nullptr;
@ -111,6 +119,145 @@ struct ShapePath
return 0;
}
int arcTo(float x, float y, float w, float h, float startAngle, float sweepAngle)
{
if ((fabsf(w) < FLT_EPSILON) || (fabsf(h) < FLT_EPSILON)) return -1;
if (fabsf(sweepAngle) < FLT_EPSILON) return -1;
if (sweepAngle > 360) sweepAngle = 360;
else if (sweepAngle < -360) sweepAngle = -360;
auto half_w = w * 0.5f;
auto half_h = h * 0.5f;
auto half_w_kappa = half_w * PATH_KAPPA;
auto half_h_kappa = half_h * PATH_KAPPA;
//Curves for arc
Point pts[13] {
//start point: 0 degree
{x + w, y + half_h},
//0 -> 90 degree
{x + w, y + half_h + half_h_kappa},
{x + half_w + half_w_kappa, y + h},
{x + half_w, y + h},
//90 -> 180 degree
{x + half_w - half_w_kappa, y + h},
{x, y + half_h + half_h_kappa},
{x, y + half_h},
//180 -> 270 degree
{x, y + half_h - half_h_kappa},
{x + half_w - half_w_kappa, y},
{x + half_w, y},
//270 -> 0 degree
{x + half_w + half_w_kappa, y},
{x + w, y + half_h - half_h_kappa},
{x + w, y + half_w}
};
auto ptsCnt = 1; //one is reserved for the start point
Point curves[13];
//perfect circle: special case fast paths
if (fabsf(startAngle) <= FLT_EPSILON) {
if (fabsf(sweepAngle - 360) <= FLT_EPSILON) {
for (int i = 11; i >= 0; --i) {
curves[ptsCnt++] = pts[i];
}
curves[0] = pts[12];
return _arcToCubic(*this, curves, ptsCnt);
} else if (fabsf(sweepAngle + 360) <= FLT_EPSILON) {
for (int i = 1; i <= 12; ++i) {
curves[ptsCnt++] = pts[i];
}
curves[0] = pts[0];
return _arcToCubic(*this, curves, ptsCnt);
}
}
auto startSegment = static_cast<int>(floor(startAngle / 90));
auto endSegment = static_cast<int>(floor((startAngle + sweepAngle) / 90));
auto startDelta = (startAngle - (startSegment * 90)) / 90;
auto endDelta = ((startAngle + sweepAngle) - (endSegment * 90)) / 90;
auto delta = sweepAngle > 0 ? 1 : -1;
if (delta < 0) {
startDelta = 1 - startDelta;
endDelta = 1 - endDelta;
}
//avoid empty start segment
if (fabsf(startDelta - 1) < FLT_EPSILON) {
startDelta = 0;
startSegment += delta;
}
//avoid empty end segment
if (fabsf(endDelta) < FLT_EPSILON) {
endDelta = 1;
endSegment -= delta;
}
startDelta = _arcAngle(startDelta * 90);
endDelta = _arcAngle(endDelta * 90);
auto splitAtStart = (fabsf(startDelta) >= FLT_EPSILON) ? true : false;
auto splitAtEnd = (fabsf(endDelta - 1.0f) >= FLT_EPSILON) ? true : false;
auto end = endSegment + delta;
//empty arc?
if (startSegment == end) {
auto quadrant = 3 - ((startSegment % 4) + 4) % 4;
auto i = 3 * quadrant;
curves[0] = (delta > 0) ? pts[i + 3] : pts[i];
return _arcToCubic(*this, curves, ptsCnt);
}
Point ptStart, ptEnd;
_findEllipseCoords(x, y, w, h, startAngle, sweepAngle, ptStart, ptEnd);
for (auto i = startSegment; i != end; i += delta) {
//auto quadrant = 3 - ((i % 4) + 4) % 4;
//auto j = 3 * quadrant;
if (delta > 0) {
//TODO: bezier
} else {
//TODO: bezier
}
//empty arc?
if (startSegment == endSegment && (fabsf(startDelta - endDelta) < FLT_EPSILON)) {
curves[0] = ptStart;
return _arcToCubic(*this, curves, ptsCnt);
}
if (i == startSegment) {
if (i == endSegment && splitAtEnd) {
//TODO: bezier
} else if (splitAtStart) {
//TODO: bezier
}
} else if (i == endSegment && splitAtEnd) {
//TODO: bezier
}
//push control points
//curves[ptsCnt++] = ctrlPt1;
//curves[ptsCnt++] = ctrlPt2;
//curves[ptsCnt++] = endPt;
cout << "ArcTo: Not Implemented!" << endl;
}
curves[ptsCnt - 1] = ptEnd;
return _arcToCubic(*this, curves, ptsCnt);
}
int close()
{
if (cmdCnt + 1 > reservedCmdCnt) reserveCmd((cmdCnt + 1) * 2);
@ -142,8 +289,101 @@ struct ShapePath
}
};
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
static float _arcAngle(float angle)
{
if (angle < FLT_EPSILON) return 0;
if (fabsf(angle - 90) < FLT_EPSILON) return 1;
auto radian = (angle / 180) * M_PI;
auto cosAngle = cos(radian);
auto sinAngle = sin(radian);
//initial guess
auto tc = angle / 90;
/* do some iterations of newton's method to approximate cosAngle
finds the zero of the function b.pointAt(tc).x() - cosAngle */
tc -= ((((2 - 3 * PATH_KAPPA) * tc + 3 * (PATH_KAPPA - 1)) * tc) * tc + 1 - cosAngle) // value
/ (((6 - 9 * PATH_KAPPA) * tc + 6 * (PATH_KAPPA - 1)) * tc); // derivative
tc -= ((((2 - 3 * PATH_KAPPA) * tc + 3 * (PATH_KAPPA - 1)) * tc) * tc + 1 - cosAngle) // value
/ (((6 - 9 * PATH_KAPPA) * tc + 6 * (PATH_KAPPA - 1)) * tc); // derivative
// initial guess
auto ts = tc;
/* do some iterations of newton's method to approximate sin_angle
finds the zero of the function b.pointAt(tc).y() - sinAngle */
ts -= ((((3 * PATH_KAPPA - 2) * ts - 6 * PATH_KAPPA + 3) * ts + 3 * PATH_KAPPA) * ts - sinAngle)
/ (((9 * PATH_KAPPA - 6) * ts + 12 * PATH_KAPPA - 6) * ts + 3 * PATH_KAPPA);
ts -= ((((3 * PATH_KAPPA - 2) * ts - 6 * PATH_KAPPA + 3) * ts + 3 * PATH_KAPPA) * ts - sinAngle)
/ (((9 * PATH_KAPPA - 6) * ts + 12 * PATH_KAPPA - 6) * ts + 3 * PATH_KAPPA);
//use the average of the t that best approximates cos_angle and the t that best approximates sin_angle
return (0.5 * (tc + ts));
}
static int _arcToCubic(ShapePath& path, const Point* pts, size_t ptsCnt)
{
assert(pts);
if (path.cmdCnt > 0 && path.cmds[path.cmdCnt] != PathCommand::Close) {
if (path.lineTo(pts[0].x, pts[0].y)) return -1;
} else {
if (path.moveTo(pts[0].x, pts[0].y)) return -1;
}
for (size_t i = 1; i < ptsCnt; i += 3) {
if (path.cubicTo(pts[i].x, pts[i].y, pts[i+1].x, pts[i+1].y, pts[i+2].x, pts[i+2].y)) {
return -1;
}
}
return 0;
}
static void _findEllipseCoords(float x, float y, float w, float h, float startAngle, float sweepAngle, Point& ptStart, Point& ptEnd)
{
float angles[2] = {startAngle, startAngle + sweepAngle};
float half_w = w * 0.5f;
float half_h = h * 0.5f;
float cx = x + half_w;
float cy = y + half_h;
Point* pts[2] = {&ptStart, &ptEnd};
for (auto i = 0; i < 2; ++i) {
auto theta = angles[i] - 360 * floor(angles[i] / 360);
auto t = theta / 90;
auto quadrant = static_cast<int>(t); //truncate
t -= quadrant;
t = _arcAngle(90 * t);
//swap x and y?
if (quadrant & 1) t = (1 - t);
//bezier coefficients
auto m = 1 - t;
auto b = m * m;
auto c = t * t;
auto d = c * t;
auto a = b * m;
b *= 3 * t;
c *= 3 * m;
auto px = a + b + c * PATH_KAPPA;
auto py = d + c + b * PATH_KAPPA;
//left quadrants
if (quadrant == 1 || quadrant == 2) px = -px;
//top quadrants
if (quadrant == 0 || quadrant == 1) py = -py;
pts[i]->x = cx + half_w * px;
pts[i]->y = cy + half_h * py;
}
}
#endif //_TVG_SHAPE_PATH_CPP_

View file

@ -1,2 +1,3 @@
all:
gcc -o testShape testShape.cpp -g -lstdc++ `pkg-config --cflags --libs elementary tizenvg`
gcc -o testMultipleShapes testMultipleShapes.cpp -g -lstdc++ `pkg-config --cflags --libs elementary tizenvg`

View file

@ -1,4 +1,5 @@
#include <tizenvg.h>
#include <Elementary.h>
using namespace std;
@ -7,24 +8,24 @@ using namespace std;
static uint32_t buffer[WIDTH * HEIGHT];
int main(int argc, char **argv)
void tvgtest()
{
//Initialize TizenVG Engine
tvg::Engine::init();
//Create a Canvas
auto canvas = tvg::SwCanvas::gen(buffer, WIDTH, HEIGHT);
canvas->reserve(2); //reserve 2 shape nodes (optional)
//canvas->reserve(2); //reserve 2 shape nodes (optional)
//Prepare Rectangle
auto shape1 = tvg::ShapeNode::gen();
shape1->rect(0, 0, 400, 400, 0.1); //x, y, w, h, corner_radius
shape1->appendRect(0, 0, 400, 400, 0); //x, y, w, h, corner_radius
shape1->fill(0, 255, 0, 255); //r, g, b, a
canvas->push(move(shape1));
//Prepare Circle
auto shape2 = tvg::ShapeNode::gen();
shape2->circle(400, 400, 200); //cx, cy, radius
shape2->appendCircle(400, 400, 200); //cx, cy, radius
shape2->fill(255, 255, 0, 255); //r, g, b, a
canvas->push(move(shape2));
@ -35,3 +36,26 @@ int main(int argc, char **argv)
//Terminate TizenVG Engine
tvg::Engine::term();
}
int main(int argc, char **argv)
{
tvgtest();
//Show the result using EFL...
elm_init(argc, argv);
Eo* win = elm_win_util_standard_add(NULL, "TizenVG Test");
Eo* img = evas_object_image_filled_add(evas_object_evas_get(win));
evas_object_image_size_set(img, WIDTH, HEIGHT);
evas_object_image_data_set(img, buffer);
evas_object_size_hint_weight_set(img, EVAS_HINT_EXPAND, EVAS_HINT_EXPAND);
evas_object_show(img);
elm_win_resize_object_add(win, img);
evas_object_geometry_set(win, 0, 0, WIDTH, HEIGHT);
evas_object_show(win);
elm_run();
elm_shutdown();
}