/* * Copyright (c) 2020 - 2023 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef _TVG_SW_COMMON_H_ #define _TVG_SW_COMMON_H_ #include "tvgCommon.h" #include "tvgRender.h" #include #if 0 #include static double timeStamp() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec + tv.tv_usec / 1000000.0); } #endif #define SW_CURVE_TYPE_POINT 0 #define SW_CURVE_TYPE_CUBIC 1 #define SW_ANGLE_PI (180L << 16) #define SW_ANGLE_2PI (SW_ANGLE_PI << 1) #define SW_ANGLE_PI2 (SW_ANGLE_PI >> 1) #define SW_ANGLE_PI4 (SW_ANGLE_PI >> 2) using SwCoord = signed long; using SwFixed = signed long long; struct SwPoint { SwCoord x, y; SwPoint& operator+=(const SwPoint& rhs) { x += rhs.x; y += rhs.y; return *this; } SwPoint operator+(const SwPoint& rhs) const { return {x + rhs.x, y + rhs.y}; } SwPoint operator-(const SwPoint& rhs) const { return {x - rhs.x, y - rhs.y}; } bool operator==(const SwPoint& rhs) const { return (x == rhs.x && y == rhs.y); } bool operator!=(const SwPoint& rhs) const { return (x != rhs.x || y != rhs.y); } bool zero() const { if (x == 0 && y == 0) return true; else return false; } bool small() const { //2 is epsilon... if (abs(x) < 2 && abs(y) < 2) return true; else return false; } }; struct SwSize { SwCoord w, h; }; struct SwOutline { Array pts; //the outline's points Array cntrs; //the contour end points Array types; //curve type Array closed; //opened or closed path? FillRule fillRule; }; struct SwSpan { uint16_t x, y; uint16_t len; uint8_t coverage; }; struct SwRleData { SwSpan *spans; uint32_t alloc; uint32_t size; }; struct SwBBox { SwPoint min, max; void reset() { min.x = min.y = max.x = max.y = 0; } }; struct SwFill { struct SwLinear { float dx, dy; float len; float offset; }; struct SwRadial { float a11, a12, a13; float a21, a22, a23; float fx, fy, fr; float dx, dy, dr; float invA, a; }; union { SwLinear linear; SwRadial radial; }; uint32_t* ctable; FillSpread spread; bool translucent; }; struct SwStrokeBorder { uint32_t ptsCnt; uint32_t maxPts; SwPoint* pts; uint8_t* tags; int32_t start; //index of current sub-path start point bool movable; //true: for ends of lineto borders }; struct SwStroke { SwFixed angleIn; SwFixed angleOut; SwPoint center; SwFixed lineLength; SwFixed subPathAngle; SwPoint ptStartSubPath; SwFixed subPathLineLength; SwFixed width; SwFixed miterlimit; StrokeCap cap; StrokeJoin join; StrokeJoin joinSaved; SwFill* fill = nullptr; SwStrokeBorder borders[2]; float sx, sy; bool firstPt; bool closedSubPath; bool handleWideStrokes; }; struct SwDashStroke { SwOutline* outline = nullptr; float curLen = 0; int32_t curIdx = 0; Point ptStart = {0, 0}; Point ptCur = {0, 0}; float* pattern = nullptr; uint32_t cnt = 0; bool curOpGap = false; bool move = true; }; struct SwShape { SwOutline* outline = nullptr; SwStroke* stroke = nullptr; SwFill* fill = nullptr; SwRleData* rle = nullptr; SwRleData* strokeRle = nullptr; SwBBox bbox; //Keep it boundary without stroke region. Using for optimal filling. bool fastTrack = false; //Fast Track: axis-aligned rectangle without any clips? }; struct SwImage { SwOutline* outline = nullptr; SwRleData* rle = nullptr; union { pixel_t* data; //system based data pointer uint32_t* buf32; //for explicit 32bits channels uint8_t* buf8; //for explicit 8bits grayscale }; uint32_t w, h, stride; int32_t ox = 0; //offset x int32_t oy = 0; //offset y float scale; uint8_t channelSize; bool direct = false; //draw image directly (with offset) bool scaled = false; //draw scaled image }; typedef uint8_t(*SwMask)(uint8_t s, uint8_t d, uint8_t a); //src, dst, alpha typedef uint32_t(*SwBlender)(uint32_t s, uint32_t d, uint8_t a); //src, dst, alpha typedef uint32_t(*SwJoin)(uint8_t r, uint8_t g, uint8_t b, uint8_t a); //color channel join typedef uint8_t(*SwAlpha)(uint8_t*); //blending alpha struct SwCompositor; struct SwSurface : Surface { SwJoin join; SwAlpha alphas[4]; //Alpha:2, InvAlpha:3, Luma:4, InvLuma:5 SwBlender blender = nullptr; //blender (optional) SwCompositor* compositor = nullptr; //compositor (optional) BlendMethod blendMethod; //blending method (uint8_t) SwAlpha alpha(CompositeMethod method) { auto idx = (int)(method) - 2; //0: None, 1: ClipPath return alphas[idx > 3 ? 0 : idx]; //CompositeMethod has only four Matting methods. } }; struct SwCompositor : Compositor { SwSurface* recoverSfc; //Recover surface when composition is started SwCompositor* recoverCmp; //Recover compositor when composition is done SwImage image; SwBBox bbox; bool valid; }; struct SwMpool { SwOutline* outline; SwOutline* strokeOutline; SwOutline* dashOutline; unsigned allocSize; }; static inline SwCoord TO_SWCOORD(float val) { return SwCoord(val * 64.0f); } static inline uint32_t JOIN(uint8_t c0, uint8_t c1, uint8_t c2, uint8_t c3) { return (c0 << 24 | c1 << 16 | c2 << 8 | c3); } static inline uint32_t ALPHA_BLEND(uint32_t c, uint32_t a) { return (((((c >> 8) & 0x00ff00ff) * a + 0x00ff00ff) & 0xff00ff00) + ((((c & 0x00ff00ff) * a + 0x00ff00ff) >> 8) & 0x00ff00ff)); } static inline uint32_t INTERPOLATE(uint32_t s, uint32_t d, uint8_t a) { return (((((((s >> 8) & 0xff00ff) - ((d >> 8) & 0xff00ff)) * a) + (d & 0xff00ff00)) & 0xff00ff00) + ((((((s & 0xff00ff) - (d & 0xff00ff)) * a) >> 8) + (d & 0xff00ff)) & 0xff00ff)); } static inline uint8_t INTERPOLATE8(uint8_t s, uint8_t d, uint8_t a) { return (((s) * (a) + 0xff) >> 8) + (((d) * ~(a) + 0xff) >> 8); } static inline SwCoord HALF_STROKE(float width) { return TO_SWCOORD(width * 0.5f); } static inline uint8_t A(uint32_t c) { return ((c) >> 24); } static inline uint8_t IA(uint32_t c) { return (~(c) >> 24); } static inline uint8_t C1(uint32_t c) { return ((c) >> 16); } static inline uint8_t C2(uint32_t c) { return ((c) >> 8); } static inline uint8_t C3(uint32_t c) { return (c); } static inline uint32_t opBlendInterp(uint32_t s, uint32_t d, uint8_t a) { return INTERPOLATE(s, d, a); } static inline uint32_t opBlendNormal(uint32_t s, uint32_t d, uint8_t a) { auto t = ALPHA_BLEND(s, a); return t + ALPHA_BLEND(d, IA(t)); } static inline uint32_t opBlendPreNormal(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { return s + ALPHA_BLEND(d, IA(s)); } static inline uint32_t opBlendSrcOver(uint32_t s, TVG_UNUSED uint32_t d, TVG_UNUSED uint8_t a) { return s; } //TODO: BlendMethod could remove the alpha parameter. static inline uint32_t opBlendDifference(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { //if (s > d) => s - d //else => d - s auto c1 = (C1(s) > C1(d)) ? (C1(s) - C1(d)) : (C1(d) - C1(s)); auto c2 = (C2(s) > C2(d)) ? (C2(s) - C2(d)) : (C2(d) - C2(s)); auto c3 = (C3(s) > C3(d)) ? (C3(s) - C3(d)) : (C3(d) - C3(s)); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendExclusion(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { //A + B - 2AB auto c1 = std::min(255, C1(s) + C1(d) - std::min(255, (C1(s) * C1(d)) << 1)); auto c2 = std::min(255, C2(s) + C2(d) - std::min(255, (C2(s) * C2(d)) << 1)); auto c3 = std::min(255, C3(s) + C3(d) - std::min(255, (C3(s) * C3(d)) << 1)); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendAdd(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { // s + d auto c1 = std::min(C1(s) + C1(d), 255); auto c2 = std::min(C2(s) + C2(d), 255); auto c3 = std::min(C3(s) + C3(d), 255); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendScreen(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { // s + d - s * d auto c1 = C1(s) + C1(d) - MULTIPLY(C1(s), C1(d)); auto c2 = C2(s) + C2(d) - MULTIPLY(C2(s), C2(d)); auto c3 = C3(s) + C3(d) - MULTIPLY(C3(s), C3(d)); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendMultiply(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { // s * d auto c1 = MULTIPLY(C1(s), C1(d)); auto c2 = MULTIPLY(C2(s), C2(d)); auto c3 = MULTIPLY(C3(s), C3(d)); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendOverlay(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { // if (2 * d < da) => 2 * s * d, // else => 1 - 2 * (1 - s) * (1 - d) auto c1 = (C1(d) < 128) ? std::min(255, 2 * MULTIPLY(C1(s), C1(d))) : (255 - std::min(255, 2 * MULTIPLY(255 - C1(s), 255 - C1(d)))); auto c2 = (C2(d) < 128) ? std::min(255, 2 * MULTIPLY(C2(s), C2(d))) : (255 - std::min(255, 2 * MULTIPLY(255 - C2(s), 255 - C2(d)))); auto c3 = (C3(d) < 128) ? std::min(255, 2 * MULTIPLY(C3(s), C3(d))) : (255 - std::min(255, 2 * MULTIPLY(255 - C3(s), 255 - C3(d)))); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendDarken(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { // min(s, d) auto c1 = std::min(C1(s), C1(d)); auto c2 = std::min(C2(s), C2(d)); auto c3 = std::min(C3(s), C3(d)); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendLighten(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { // max(s, d) auto c1 = std::max(C1(s), C1(d)); auto c2 = std::max(C2(s), C2(d)); auto c3 = std::max(C3(s), C3(d)); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendColorDodge(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { // d / (1 - s) auto is = 0xffffffff - s; auto c1 = (C1(is) > 0) ? (C1(d) / C1(is)) : C1(d); auto c2 = (C2(is) > 0) ? (C2(d) / C2(is)) : C2(d); auto c3 = (C3(is) > 0) ? (C3(d) / C3(is)) : C3(d); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendColorBurn(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { // 1 - (1 - d) / s auto id = 0xffffffff - d; auto c1 = 255 - ((C1(s) > 0) ? (C1(id) / C1(s)) : C1(id)); auto c2 = 255 - ((C2(s) > 0) ? (C2(id) / C2(s)) : C2(id)); auto c3 = 255 - ((C3(s) > 0) ? (C3(id) / C3(s)) : C3(id)); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendHardLight(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { auto c1 = (C1(s) < 128) ? std::min(255, 2 * MULTIPLY(C1(s), C1(d))) : (255 - std::min(255, 2 * MULTIPLY(255 - C1(s), 255 - C1(d)))); auto c2 = (C2(s) < 128) ? std::min(255, 2 * MULTIPLY(C2(s), C2(d))) : (255 - std::min(255, 2 * MULTIPLY(255 - C2(s), 255 - C2(d)))); auto c3 = (C3(s) < 128) ? std::min(255, 2 * MULTIPLY(C3(s), C3(d))) : (255 - std::min(255, 2 * MULTIPLY(255 - C3(s), 255 - C3(d)))); return JOIN(255, c1, c2, c3); } static inline uint32_t opBlendSoftLight(uint32_t s, uint32_t d, TVG_UNUSED uint8_t a) { //(255 - 2 * s) * (d * d) + (2 * s * b) auto c1 = std::min(255, MULTIPLY(255 - std::min(255, 2 * C1(s)), MULTIPLY(C1(d), C1(d))) + 2 * MULTIPLY(C1(s), C1(d))); auto c2 = std::min(255, MULTIPLY(255 - std::min(255, 2 * C2(s)), MULTIPLY(C2(d), C2(d))) + 2 * MULTIPLY(C2(s), C2(d))); auto c3 = std::min(255, MULTIPLY(255 - std::min(255, 2 * C3(s)), MULTIPLY(C3(d), C3(d))) + 2 * MULTIPLY(C3(s), C3(d))); return JOIN(255, c1, c2, c3); } int64_t mathMultiply(int64_t a, int64_t b); int64_t mathDivide(int64_t a, int64_t b); int64_t mathMulDiv(int64_t a, int64_t b, int64_t c); void mathRotate(SwPoint& pt, SwFixed angle); SwFixed mathTan(SwFixed angle); SwFixed mathAtan(const SwPoint& pt); SwFixed mathCos(SwFixed angle); SwFixed mathSin(SwFixed angle); void mathSplitCubic(SwPoint* base); SwFixed mathDiff(SwFixed angle1, SwFixed angle2); SwFixed mathLength(const SwPoint& pt); bool mathSmallCubic(const SwPoint* base, SwFixed& angleIn, SwFixed& angleMid, SwFixed& angleOut); SwFixed mathMean(SwFixed angle1, SwFixed angle2); SwPoint mathTransform(const Point* to, const Matrix* transform); bool mathUpdateOutlineBBox(const SwOutline* outline, const SwBBox& clipRegion, SwBBox& renderRegion, bool fastTrack); bool mathClipBBox(const SwBBox& clipper, SwBBox& clipee); void shapeReset(SwShape* shape); bool shapePrepare(SwShape* shape, const RenderShape* rshape, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid, bool hasComposite); bool shapePrepared(const SwShape* shape); bool shapeGenRle(SwShape* shape, const RenderShape* rshape, bool antiAlias); void shapeDelOutline(SwShape* shape, SwMpool* mpool, uint32_t tid); void shapeResetStroke(SwShape* shape, const RenderShape* rshape, const Matrix* transform); bool shapeGenStrokeRle(SwShape* shape, const RenderShape* rshape, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid); void shapeFree(SwShape* shape); void shapeDelStroke(SwShape* shape); bool shapeGenFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, uint8_t opacity, bool ctable); bool shapeGenStrokeFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, uint8_t opacity, bool ctable); void shapeResetFill(SwShape* shape); void shapeResetStrokeFill(SwShape* shape); void shapeDelFill(SwShape* shape); void shapeDelStrokeFill(SwShape* shape); void strokeReset(SwStroke* stroke, const RenderShape* shape, const Matrix* transform); bool strokeParseOutline(SwStroke* stroke, const SwOutline& outline); SwOutline* strokeExportOutline(SwStroke* stroke, SwMpool* mpool, unsigned tid); void strokeFree(SwStroke* stroke); bool imagePrepare(SwImage* image, const RenderMesh* mesh, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid); bool imageGenRle(SwImage* image, const SwBBox& renderRegion, bool antiAlias); void imageDelOutline(SwImage* image, SwMpool* mpool, uint32_t tid); void imageReset(SwImage* image); void imageFree(SwImage* image); bool fillGenColorTable(SwFill* fill, const Fill* fdata, const Matrix* transform, SwSurface* surface, uint8_t opacity, bool ctable); void fillReset(SwFill* fill); void fillFree(SwFill* fill); //OPTIMIZE_ME: Skip the function pointer access void fillLinear(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask maskOp, uint8_t opacity); //composite masking ver. void fillLinear(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask maskOp, uint8_t opacity); //direct masking ver. void fillLinear(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a); //blending ver. void fillLinear(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a); //blending + BlendingMethod(op2) ver. void fillLinear(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity); //matting ver. void fillRadial(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask op, uint8_t a); //composite masking ver. void fillRadial(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask op, uint8_t a) ; //direct masking ver. void fillRadial(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a); //blending ver. void fillRadial(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a); //blending + BlendingMethod(op2) ver. void fillRadial(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity); //matting ver. SwRleData* rleRender(SwRleData* rle, const SwOutline* outline, const SwBBox& renderRegion, bool antiAlias); SwRleData* rleRender(const SwBBox* bbox); void rleFree(SwRleData* rle); void rleReset(SwRleData* rle); void rleMerge(SwRleData* rle, SwRleData* clip1, SwRleData* clip2); void rleClipPath(SwRleData* rle, const SwRleData* clip); void rleClipRect(SwRleData* rle, const SwBBox* clip); SwMpool* mpoolInit(uint32_t threads); bool mpoolTerm(SwMpool* mpool); bool mpoolClear(SwMpool* mpool); SwOutline* mpoolReqOutline(SwMpool* mpool, unsigned idx); void mpoolRetOutline(SwMpool* mpool, unsigned idx); SwOutline* mpoolReqStrokeOutline(SwMpool* mpool, unsigned idx); void mpoolRetStrokeOutline(SwMpool* mpool, unsigned idx); SwOutline* mpoolReqDashOutline(SwMpool* mpool, unsigned idx); void mpoolRetDashOutline(SwMpool* mpool, unsigned idx); bool rasterCompositor(SwSurface* surface); bool rasterGradientShape(SwSurface* surface, SwShape* shape, unsigned id); bool rasterShape(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a); bool rasterImage(SwSurface* surface, SwImage* image, const RenderMesh* mesh, const Matrix* transform, const SwBBox& bbox, uint8_t opacity); bool rasterStroke(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a); bool rasterGradientStroke(SwSurface* surface, SwShape* shape, unsigned id); bool rasterClear(SwSurface* surface, uint32_t x, uint32_t y, uint32_t w, uint32_t h); void rasterPixel32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len); void rasterGrayscale8(uint8_t *dst, uint8_t val, uint32_t offset, int32_t len); void rasterUnpremultiply(Surface* surface); void rasterPremultiply(Surface* surface); bool rasterConvertCS(Surface* surface, ColorSpace to); #endif /* _TVG_SW_COMMON_H_ */