/* * Copyright (c) 2020 - 2025 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgMath.h" #include "tvgRender.h" /************************************************************************/ /* RenderMethod Class Implementation */ /************************************************************************/ uint32_t RenderMethod::ref() { ScopedLock lock(key); return (++refCnt); } uint32_t RenderMethod::unref() { ScopedLock lock(key); return (--refCnt); } /************************************************************************/ /* RenderPath Class Implementation */ /************************************************************************/ bool RenderPath::bounds(float* x, float* y, float* w, float* h) { //unexpected if (cmds.empty() || cmds.first() == PathCommand::CubicTo) return false; auto min = Point{FLT_MAX, FLT_MAX}; auto max = Point{-FLT_MAX, -FLT_MAX}; auto pt = pts.begin(); auto cmd = cmds.begin(); auto assign = [&](Point* pt, Point& min, Point& max) -> void { if (pt->x < min.x) min.x = pt->x; if (pt->y < min.y) min.y = pt->y; if (pt->x > max.x) max.x = pt->x; if (pt->y > max.y) max.y = pt->y; }; while (cmd < cmds.end()) { switch (*cmd) { case PathCommand::MoveTo: { //skip the invalid assignments if (cmd + 1 < cmds.end()) { auto next = *(cmd + 1); if (next == PathCommand::LineTo || next == PathCommand::CubicTo) { assign(pt, min, max); } } ++pt; break; } case PathCommand::LineTo: { assign(pt, min, max); ++pt; break; } case PathCommand::CubicTo: { Bezier bz = {pt[-1], pt[0], pt[1], pt[2]}; bz.bounds(min, max); pt += 3; break; } default: break; } ++cmd; } if (x) *x = min.x; if (y) *y = min.y; if (w) *w = max.x - min.x; if (h) *h = max.y - min.y; return true; } /************************************************************************/ /* RenderRegion Class Implementation */ /************************************************************************/ void RenderRegion::intersect(const RenderRegion& rhs) { auto x1 = x + w; auto y1 = y + h; auto x2 = rhs.x + rhs.w; auto y2 = rhs.y + rhs.h; x = (x > rhs.x) ? x : rhs.x; y = (y > rhs.y) ? y : rhs.y; w = ((x1 < x2) ? x1 : x2) - x; h = ((y1 < y2) ? y1 : y2) - y; if (w < 0) w = 0; if (h < 0) h = 0; } void RenderRegion::add(const RenderRegion& rhs) { if (rhs.x < x) { w += (x - rhs.x); x = rhs.x; } if (rhs.y < y) { h += (y - rhs.y); y = rhs.y; } if (rhs.x + rhs.w > x + w) w = (rhs.x + rhs.w) - x; if (rhs.y + rhs.h > y + h) h = (rhs.y + rhs.h) - y; } /************************************************************************/ /* RenderTrimPath Class Implementation */ /************************************************************************/ #define EPSILON 1e-4f static void _trimAt(const PathCommand* cmds, const Point* pts, Point& moveTo, float at1, float at2, bool start, RenderPath& out) { switch (*cmds) { case PathCommand::LineTo: { Line tmp, left, right; Line{*(pts - 1), *pts}.split(at1, left, tmp); tmp.split(at2, left, right); if (start) { out.pts.push(left.pt1); moveTo = left.pt1; out.cmds.push(PathCommand::MoveTo); } out.pts.push(left.pt2); out.cmds.push(PathCommand::LineTo); break; } case PathCommand::CubicTo: { Bezier tmp, left, right; Bezier{*(pts - 1), *pts, *(pts + 1), *(pts + 2)}.split(at1, left, tmp); tmp.split(at2, left, right); if (start) { moveTo = left.start; out.pts.push(left.start); out.cmds.push(PathCommand::MoveTo); } out.pts.push(left.ctrl1); out.pts.push(left.ctrl2); out.pts.push(left.end); out.cmds.push(PathCommand::CubicTo); break; } case PathCommand::Close: { Line tmp, left, right; Line{*(pts - 1), moveTo}.split(at1, left, tmp); tmp.split(at2, left, right); if (start) { moveTo = left.pt1; out.pts.push(left.pt1); out.cmds.push(PathCommand::MoveTo); } out.pts.push(left.pt2); out.cmds.push(PathCommand::LineTo); break; } default: break; } } static void _add(const PathCommand* cmds, const Point* pts, const Point& moveTo, bool& start, RenderPath& out) { switch (*cmds) { case PathCommand::MoveTo: { out.cmds.push(PathCommand::MoveTo); out.pts.push(*pts); start = false; break; } case PathCommand::LineTo: { if (start) { out.cmds.push(PathCommand::MoveTo); out.pts.push(*(pts - 1)); } out.cmds.push(PathCommand::LineTo); out.pts.push(*pts); start = false; break; } case PathCommand::CubicTo: { if (start) { out.cmds.push(PathCommand::MoveTo); out.pts.push(*(pts - 1)); } out.cmds.push(PathCommand::CubicTo); out.pts.push(*pts); out.pts.push(*(pts + 1)); out.pts.push(*(pts + 2)); start = false; break; } case PathCommand::Close: { if (start) { out.cmds.push(PathCommand::MoveTo); out.pts.push(*(pts - 1)); } out.cmds.push(PathCommand::LineTo); out.pts.push(moveTo); start = true; break; } } } static void _trimPath(const PathCommand* inCmds, uint32_t inCmdsCnt, const Point* inPts, TVG_UNUSED uint32_t inPtsCnt, float trimStart, float trimEnd, RenderPath& out, bool connect = false) { auto cmds = const_cast(inCmds); auto pts = const_cast(inPts); auto moveToTrimmed = *pts; auto moveTo = *pts; auto len = 0.0f; auto _length = [&]() -> float { switch (*cmds) { case PathCommand::MoveTo: return 0.0f; case PathCommand::LineTo: return tvg::length(pts - 1, pts); case PathCommand::CubicTo: return Bezier{*(pts - 1), *pts, *(pts + 1), *(pts + 2)}.length(); case PathCommand::Close: return tvg::length(pts - 1, &moveTo); } return 0.0f; }; auto _shift = [&]() -> void { switch (*cmds) { case PathCommand::MoveTo: moveTo = *pts; moveToTrimmed = *pts; ++pts; break; case PathCommand::LineTo: ++pts; break; case PathCommand::CubicTo: pts += 3; break; case PathCommand::Close: break; } ++cmds; }; auto start = !connect; for (uint32_t i = 0; i < inCmdsCnt; ++i) { auto dLen = _length(); //very short segments are skipped since due to the finite precision of Bezier curve subdivision and length calculation (1e-2), //trimming may produce very short segments that would effectively have zero length with higher computational accuracy. if (len <= trimStart) { //cut the segment at the beginning and at the end if (len + dLen > trimEnd) { _trimAt(cmds, pts, moveToTrimmed, trimStart - len, trimEnd - trimStart, start, out); start = false; //cut the segment at the beginning } else if (len + dLen > trimStart + EPSILON) { _trimAt(cmds, pts, moveToTrimmed, trimStart - len, len + dLen - trimStart, start, out); start = false; } } else if (len <= trimEnd - EPSILON) { //cut the segment at the end if (len + dLen > trimEnd) { _trimAt(cmds, pts, moveTo, 0.0f, trimEnd - len, start, out); start = true; //add the whole segment } else if (len + dLen > trimStart + EPSILON) _add(cmds, pts, moveTo, start, out); } len += dLen; _shift(); } } static void _trim(const PathCommand* inCmds, uint32_t inCmdsCnt, const Point* inPts, uint32_t inPtsCnt, float begin, float end, bool connect, RenderPath& out) { auto totalLength = tvg::length(inCmds, inCmdsCnt, inPts, inPtsCnt); auto trimStart = begin * totalLength; auto trimEnd = end * totalLength; if (begin >= end) { _trimPath(inCmds, inCmdsCnt, inPts, inPtsCnt, trimStart, totalLength, out); _trimPath(inCmds, inCmdsCnt, inPts, inPtsCnt, 0.0f, trimEnd, out, connect); } else { _trimPath(inCmds, inCmdsCnt, inPts, inPtsCnt, trimStart, trimEnd, out); } } static void _get(float& begin, float& end) { auto loop = true; if (begin > 1.0f && end > 1.0f) loop = false; if (begin < 0.0f && end < 0.0f) loop = false; if (begin >= 0.0f && begin <= 1.0f && end >= 0.0f && end <= 1.0f) loop = false; if (begin > 1.0f) begin -= 1.0f; if (begin < 0.0f) begin += 1.0f; if (end > 1.0f) end -= 1.0f; if (end < 0.0f) end += 1.0f; if ((loop && begin < end) || (!loop && begin > end)) std::swap(begin, end); } bool RenderTrimPath::trim(const RenderPath& in, RenderPath& out) const { if (in.pts.count < 2 || tvg::zero(begin - end)) return false; float begin = this->begin, end = this->end; _get(begin, end); out.cmds.reserve(in.cmds.count * 2); out.pts.reserve(in.pts.count * 2); auto pts = in.pts.data; auto cmds = in.cmds.data; if (simultaneous) { auto startCmds = cmds; auto startPts = pts; uint32_t i = 0; while (i < in.cmds.count) { switch (in.cmds[i]) { case PathCommand::MoveTo: { if (startCmds != cmds) _trim(startCmds, cmds - startCmds, startPts, pts - startPts, begin, end, *(cmds - 1) == PathCommand::Close, out); startPts = pts; startCmds = cmds; ++pts; ++cmds; break; } case PathCommand::LineTo: { ++pts; ++cmds; break; } case PathCommand::CubicTo: { pts += 3; ++cmds; break; } case PathCommand::Close: { ++cmds; if (startCmds != cmds) _trim(startCmds, cmds - startCmds, startPts, pts - startPts, begin, end, *(cmds - 1) == PathCommand::Close, out); startPts = pts; startCmds = cmds; break; } } i++; } if (startCmds != cmds) _trim(startCmds, cmds - startCmds, startPts, pts - startPts, begin, end, *(cmds - 1) == PathCommand::Close, out); } else { _trim(in.cmds.data, in.cmds.count, in.pts.data, in.pts.count, begin, end, false, out); } return out.pts.count >= 2; }