/* * Copyright (c) 2020 Samsung Electronics Co., Ltd. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgSwCommon.h" /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ struct Line { Point pt1; Point pt2; }; static SwPoint _transform(const Point* to, const Matrix* transform) { if (!transform) return {TO_SWCOORD(to->x), TO_SWCOORD(to->y)}; auto tx = round(to->x * transform->e11 + to->y * transform->e12 + transform->e13); auto ty = round(to->x * transform->e21 + to->y * transform->e22 + transform->e23); return {TO_SWCOORD(tx), TO_SWCOORD(ty)}; } static float _lineLength(const Point& pt1, const Point& pt2) { /* approximate sqrt(x*x + y*y) using alpha max plus beta min algorithm. With alpha = 1, beta = 3/8, giving results with the largest error less than 7% compared to the exact value. */ Point diff = {pt2.x - pt1.x, pt2.y - pt1.y}; if (diff.x < 0) diff.x = -diff.x; if (diff.y < 0) diff.y = -diff.y; return (diff.x > diff.y) ? (diff.x + diff.y * 0.375f) : (diff.y + diff.x * 0.375f); } static void _lineSplitAt(const Line& cur, float at, Line& left, Line& right) { auto len = _lineLength(cur.pt1, cur.pt2); auto dx = ((cur.pt2.x - cur.pt1.x) / len) * at; auto dy = ((cur.pt2.y - cur.pt1.y) / len) * at; left.pt1 = cur.pt1; left.pt2.x = left.pt1.x + dx; left.pt2.y = left.pt1.y + dy; right.pt1 = left.pt2; right.pt2 = cur.pt2; } static void _growOutlineContour(SwOutline& outline, uint32_t n) { if (outline.reservedCntrsCnt >= outline.cntrsCnt + n) return; outline.reservedCntrsCnt = outline.cntrsCnt + n; outline.cntrs = static_cast(realloc(outline.cntrs, outline.reservedCntrsCnt * sizeof(uint32_t))); } static void _growOutlinePoint(SwOutline& outline, uint32_t n) { if (outline.reservedPtsCnt >= outline.ptsCnt + n) return; outline.reservedPtsCnt = outline.ptsCnt + n; outline.pts = static_cast(realloc(outline.pts, outline.reservedPtsCnt * sizeof(SwPoint))); outline.types = static_cast(realloc(outline.types, outline.reservedPtsCnt * sizeof(uint8_t))); } static void _delOutline(SwOutline* outline) { if (!outline) return; if (outline->cntrs) free(outline->cntrs); if (outline->pts) free(outline->pts); if (outline->types) free(outline->types); free(outline); } static void _outlineEnd(SwOutline& outline) { _growOutlineContour(outline, 1); if (outline.ptsCnt > 0) { outline.cntrs[outline.cntrsCnt] = outline.ptsCnt - 1; ++outline.cntrsCnt; } } static void _outlineMoveTo(SwOutline& outline, const Point* to, const Matrix* transform) { _growOutlinePoint(outline, 1); outline.pts[outline.ptsCnt] = _transform(to, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT; if (outline.ptsCnt > 0) { _growOutlineContour(outline, 1); outline.cntrs[outline.cntrsCnt] = outline.ptsCnt - 1; ++outline.cntrsCnt; } ++outline.ptsCnt; } static void _outlineLineTo(SwOutline& outline, const Point* to, const Matrix* transform) { _growOutlinePoint(outline, 1); outline.pts[outline.ptsCnt] = _transform(to, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT; ++outline.ptsCnt; } static void _outlineCubicTo(SwOutline& outline, const Point* ctrl1, const Point* ctrl2, const Point* to, const Matrix* transform) { _growOutlinePoint(outline, 3); outline.pts[outline.ptsCnt] = _transform(ctrl1, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_CUBIC; ++outline.ptsCnt; outline.pts[outline.ptsCnt] = _transform(ctrl2, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_CUBIC; ++outline.ptsCnt; outline.pts[outline.ptsCnt] = _transform(to, transform); outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT; ++outline.ptsCnt; } static void _outlineClose(SwOutline& outline) { uint32_t i = 0; if (outline.cntrsCnt > 0) { i = outline.cntrs[outline.cntrsCnt - 1] + 1; } else { i = 0; //First Path } //Make sure there is at least one point in the current path if (outline.ptsCnt == i) { outline.opened = true; return; } //Close the path _growOutlinePoint(outline, 1); outline.pts[outline.ptsCnt] = outline.pts[i]; outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT; ++outline.ptsCnt; outline.opened = false; } static void _initBBox(SwBBox& bbox) { bbox.min.x = bbox.min.y = 0; bbox.max.x = bbox.max.y = 0; } static bool _updateBBox(SwOutline* outline, SwBBox& bbox) { if (!outline) return false; auto pt = outline->pts; if (outline->ptsCnt <= 0) { _initBBox(bbox); return false; } auto xMin = pt->x; auto xMax = pt->x; auto yMin = pt->y; auto yMax = pt->y; ++pt; for(uint32_t i = 1; i < outline->ptsCnt; ++i, ++pt) { if (xMin > pt->x) xMin = pt->x; if (xMax < pt->x) xMax = pt->x; if (yMin > pt->y) yMin = pt->y; if (yMax < pt->y) yMax = pt->y; } bbox.min.x = xMin >> 6; bbox.max.x = (xMax + 63) >> 6; bbox.min.y = yMin >> 6; bbox.max.y = (yMax + 63) >> 6; if (xMax - xMin < 1 && yMax - yMin < 1) return false; return true; } static bool _checkValid(const SwOutline* outline, const SwBBox& bbox, const SwSize& clip) { if (outline->ptsCnt == 0 || outline->cntrsCnt <= 0) return false; //Check boundary if (bbox.min.x >= clip.w || bbox.min.y >= clip.h || bbox.max.x <= 0 || bbox.max.y <= 0) return false; return true; } static void _dashLineTo(SwDashStroke& dash, const Point* to, const Matrix* transform) { _growOutlinePoint(*dash.outline, dash.outline->ptsCnt >> 1); _growOutlineContour(*dash.outline, dash.outline->cntrsCnt >> 1); Line cur = {dash.ptCur, *to}; auto len = _lineLength(cur.pt1, cur.pt2); if (len < dash.curLen) { dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &dash.ptCur, transform); _outlineLineTo(*dash.outline, to, transform); } } else { while (len > dash.curLen) { len -= dash.curLen; Line left, right; _lineSplitAt(cur, dash.curLen, left, right);; dash.curIdx = (dash.curIdx + 1) % dash.cnt; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &left.pt1, transform); _outlineLineTo(*dash.outline, &left.pt2, transform); } dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; cur = right; dash.ptCur = cur.pt1; } //leftovers dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &cur.pt1, transform); _outlineLineTo(*dash.outline, &cur.pt2, transform); } if (dash.curLen < 1) { //move to next dash dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; } } dash.ptCur = *to; } static void _dashCubicTo(SwDashStroke& dash, const Point* ctrl1, const Point* ctrl2, const Point* to, const Matrix* transform) { _growOutlinePoint(*dash.outline, dash.outline->ptsCnt >> 1); _growOutlineContour(*dash.outline, dash.outline->cntrsCnt >> 1); Bezier cur = { dash.ptCur, *ctrl1, *ctrl2, *to}; auto len = bezLength(cur); if (len < dash.curLen) { dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &dash.ptCur, transform); _outlineCubicTo(*dash.outline, ctrl1, ctrl2, to, transform); } } else { while (len > dash.curLen) { Bezier left, right; len -= dash.curLen; bezSplitAt(cur, dash.curLen, left, right); dash.curIdx = (dash.curIdx + 1) % dash.cnt; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &left.start, transform); _outlineCubicTo(*dash.outline, &left.ctrl1, &left.ctrl2, &left.end, transform); } dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; cur = right; dash.ptCur = right.start; } //leftovers dash.curLen -= len; if (!dash.curOpGap) { _outlineMoveTo(*dash.outline, &cur.start, transform); _outlineCubicTo(*dash.outline, &cur.ctrl1, &cur.ctrl2, &cur.end, transform); } if (dash.curLen < 1) { //move to next dash dash.curIdx = (dash.curIdx + 1) % dash.cnt; dash.curLen = dash.pattern[dash.curIdx]; dash.curOpGap = !dash.curOpGap; } } dash.ptCur = *to; } SwOutline* _genDashOutline(const Shape* sdata, const Matrix* transform) { const PathCommand* cmds = nullptr; auto cmdCnt = sdata->pathCommands(&cmds); const Point* pts = nullptr; auto ptsCnt = sdata->pathCoords(&pts); //No actual shape data if (cmdCnt == 0 || ptsCnt == 0) return nullptr; SwDashStroke dash; dash.curIdx = 0; dash.curLen = 0; dash.ptStart = {0, 0}; dash.ptCur = {0, 0}; dash.curOpGap = false; const float* pattern; dash.cnt = sdata->strokeDash(&pattern); if (dash.cnt == 0) return nullptr; //Is it safe to mutual exclusive? dash.pattern = const_cast(pattern); dash.outline = static_cast(calloc(1, sizeof(SwOutline))); dash.outline->opened = true; //smart reservation auto outlinePtsCnt = 0; auto outlineCntrsCnt = 0; for (uint32_t i = 0; i < cmdCnt; ++i) { switch(*(cmds + i)) { case PathCommand::Close: { ++outlinePtsCnt; break; } case PathCommand::MoveTo: { ++outlineCntrsCnt; ++outlinePtsCnt; break; } case PathCommand::LineTo: { ++outlinePtsCnt; break; } case PathCommand::CubicTo: { outlinePtsCnt += 3; break; } } } ++outlinePtsCnt; //for close ++outlineCntrsCnt; //for end //Reserve Approximitely 20x... _growOutlinePoint(*dash.outline, outlinePtsCnt * 20); _growOutlineContour(*dash.outline, outlineCntrsCnt * 20); while (cmdCnt-- > 0) { switch(*cmds) { case PathCommand::Close: { _dashLineTo(dash, &dash.ptStart, transform); break; } case PathCommand::MoveTo: { //reset the dash dash.curIdx = 0; dash.curLen = *dash.pattern; dash.curOpGap = false; dash.ptStart = dash.ptCur = *pts; ++pts; break; } case PathCommand::LineTo: { _dashLineTo(dash, pts, transform); ++pts; break; } case PathCommand::CubicTo: { _dashCubicTo(dash, pts, pts + 1, pts + 2, transform); pts += 3; break; } } ++cmds; } _outlineEnd(*dash.outline); return dash.outline; } bool _fastTrack(const SwOutline* outline) { //Fast Track: Othogonal rectangle? if (outline->ptsCnt != 5) return false; auto pt1 = outline->pts + 0; auto pt2 = outline->pts + 1; auto pt3 = outline->pts + 2; auto pt4 = outline->pts + 3; auto min1 = pt1->y < pt3->y ? pt1 : pt3; auto min2 = pt2->y < pt4->y ? pt2 : pt4; if (min1->y != min2->y) return false; SwCoord len1 = pow(pt1->x - pt3->x, 2) + pow(pt1->y - pt3->y, 2); SwCoord len2 = pow(pt2->x - pt4->x, 2) + pow(pt2->y - pt4->y, 2); if (len1 == len2) return true; return false; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ bool shapePrepare(SwShape* shape, const Shape* sdata, const SwSize& clip, const Matrix* transform) { if (!shapeGenOutline(shape, sdata, transform)) return false; if (!_updateBBox(shape->outline, shape->bbox)) return false; if (!_checkValid(shape->outline, shape->bbox, clip)) return false; return true; } bool shapeGenRle(SwShape* shape, TVG_UNUSED const Shape* sdata, const SwSize& clip, bool antiAlias) { //FIXME: Should we draw it? //Case: Stroke Line //if (shape.outline->opened) return true; //Case A: Fast Track Rectangle Drawing if ((shape->rect = _fastTrack(shape->outline))) return true; //Case B: Normale Shape RLE Drawing if ((shape->rle = rleRender(shape->outline, shape->bbox, clip, antiAlias))) return true; return false; } void shapeDelOutline(SwShape* shape) { auto outline = shape->outline; _delOutline(outline); shape->outline = nullptr; } void shapeReset(SwShape* shape) { shapeDelOutline(shape); rleFree(shape->rle); shape->rle = nullptr; shape->rect = false; _initBBox(shape->bbox); } bool shapeGenOutline(SwShape* shape, const Shape* sdata, const Matrix* transform) { const PathCommand* cmds = nullptr; auto cmdCnt = sdata->pathCommands(&cmds); const Point* pts = nullptr; auto ptsCnt = sdata->pathCoords(&pts); //No actual shape data if (cmdCnt == 0 || ptsCnt == 0) return false; //smart reservation auto outlinePtsCnt = 0; auto outlineCntrsCnt = 0; for (uint32_t i = 0; i < cmdCnt; ++i) { switch(*(cmds + i)) { case PathCommand::Close: { ++outlinePtsCnt; break; } case PathCommand::MoveTo: { ++outlineCntrsCnt; ++outlinePtsCnt; break; } case PathCommand::LineTo: { ++outlinePtsCnt; break; } case PathCommand::CubicTo: { outlinePtsCnt += 3; break; } } } ++outlinePtsCnt; //for close ++outlineCntrsCnt; //for end auto outline = shape->outline; if (!outline) outline = static_cast(calloc(1, sizeof(SwOutline))); outline->opened = true; _growOutlinePoint(*outline, outlinePtsCnt); _growOutlineContour(*outline, outlineCntrsCnt); auto closed = false; //Generate Outlines while (cmdCnt-- > 0) { switch(*cmds) { case PathCommand::Close: { _outlineClose(*outline); closed = true; break; } case PathCommand::MoveTo: { _outlineMoveTo(*outline, pts, transform); ++pts; break; } case PathCommand::LineTo: { _outlineLineTo(*outline, pts, transform); ++pts; break; } case PathCommand::CubicTo: { _outlineCubicTo(*outline, pts, pts + 1, pts + 2, transform); pts += 3; break; } } ++cmds; } _outlineEnd(*outline); if (closed) outline->opened = false; //FIXME: //outline->flags = SwOutline::FillRule::Winding; shape->outline = outline; return true; } void shapeFree(SwShape* shape) { shapeDelOutline(shape); rleFree(shape->rle); shapeDelFill(shape); if (shape->stroke) { rleFree(shape->strokeRle); strokeFree(shape->stroke); } } void shapeDelStroke(SwShape* shape) { if (!shape->stroke) return; rleFree(shape->strokeRle); shape->strokeRle = nullptr; strokeFree(shape->stroke); shape->stroke = nullptr; } void shapeResetStroke(SwShape* shape, const Shape* sdata, const Matrix* transform) { if (!shape->stroke) shape->stroke = static_cast(calloc(1, sizeof(SwStroke))); auto stroke = shape->stroke; if (!stroke) return; strokeReset(stroke, sdata, transform); rleFree(shape->strokeRle); shape->strokeRle = nullptr; } bool shapeGenStrokeRle(SwShape* shape, const Shape* sdata, const Matrix* transform, const SwSize& clip) { SwOutline* shapeOutline = nullptr; SwOutline* strokeOutline = nullptr; bool freeOutline = false; bool ret = true; //Dash Style Stroke if (sdata->strokeDash(nullptr) > 0) { shapeOutline = _genDashOutline(sdata, transform); if (!shapeOutline) return false; freeOutline = true; //Normal Style stroke } else { if (!shape->outline) { if (!shapeGenOutline(shape, sdata, transform)) return false; } shapeOutline = shape->outline; } if (!strokeParseOutline(shape->stroke, *shapeOutline)) { ret = false; goto fail; } strokeOutline = strokeExportOutline(shape->stroke); if (!strokeOutline) { ret = false; goto fail; } SwBBox bbox; _updateBBox(strokeOutline, bbox); if (!_checkValid(strokeOutline, bbox, clip)) { ret = false; goto fail; } shape->strokeRle = rleRender(strokeOutline, bbox, clip, true); fail: if (freeOutline) _delOutline(shapeOutline); _delOutline(strokeOutline); return ret; } bool shapeGenFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, bool ctable) { return fillGenColorTable(shape->fill, fill, transform, surface, ctable); } void shapeResetFill(SwShape* shape) { if (!shape->fill) { shape->fill = static_cast(calloc(1, sizeof(SwFill))); if (!shape->fill) return; } fillReset(shape->fill); } void shapeDelFill(SwShape* shape) { if (!shape->fill) return; fillFree(shape->fill); shape->fill = nullptr; }