/* * Copyright (c) 2021 - 2024 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgMath.h" #define BEZIER_EPSILON 1e-2f /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ static float _lineLengthApprox(const Point& pt1, const Point& pt2) { /* approximate sqrt(x*x + y*y) using alpha max plus beta min algorithm. With alpha = 1, beta = 3/8, giving results with the largest error less than 7% compared to the exact value. */ Point diff = {pt2.x - pt1.x, pt2.y - pt1.y}; if (diff.x < 0) diff.x = -diff.x; if (diff.y < 0) diff.y = -diff.y; return (diff.x > diff.y) ? (diff.x + diff.y * 0.375f) : (diff.y + diff.x * 0.375f); } static float _lineLength(const Point& pt1, const Point& pt2) { Point diff = {pt2.x - pt1.x, pt2.y - pt1.y}; return sqrtf(diff.x * diff.x + diff.y * diff.y); } template float _bezLength(const Bezier& cur, LengthFunc lineLengthFunc) { Bezier left, right; auto len = lineLengthFunc(cur.start, cur.ctrl1) + lineLengthFunc(cur.ctrl1, cur.ctrl2) + lineLengthFunc(cur.ctrl2, cur.end); auto chord = lineLengthFunc(cur.start, cur.end); if (fabsf(len - chord) > BEZIER_EPSILON) { cur.split(left, right); return _bezLength(left, lineLengthFunc) + _bezLength(right, lineLengthFunc); } return len; } template float _bezAt(const Bezier& bz, float at, float length, LengthFunc lineLengthFunc) { auto biggest = 1.0f; auto smallest = 0.0f; auto t = 0.5f; //just in case to prevent an infinite loop if (at <= 0) return 0.0f; if (at >= length) return 1.0f; while (true) { auto right = bz; Bezier left; right.split(t, left); length = _bezLength(left, lineLengthFunc); if (fabsf(length - at) < BEZIER_EPSILON || fabsf(smallest - biggest) < BEZIER_EPSILON) { break; } if (length < at) { smallest = t; t = (t + biggest) * 0.5f; } else { biggest = t; t = (smallest + t) * 0.5f; } } return t; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ namespace tvg { //https://en.wikipedia.org/wiki/Remez_algorithm float atan2(float y, float x) { auto a = std::min(fabsf(x), fabsf(y)) / std::max(fabsf(x), fabsf(y)); auto s = a * a; auto r = ((-0.0464964749f * s + 0.15931422f) * s - 0.327622764f) * s * a + a; if (fabsf(y) > fabsf(x)) r = 1.57079637f - r; if (x < 0) r = 3.14159274f - r; if (y < 0) return -r; return r; } bool inverse(const Matrix* m, Matrix* out) { auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) - m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) + m->e13 * (m->e21 * m->e32 - m->e22 * m->e31); if (tvg::zero(det)) return false; auto invDet = 1 / det; out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet; out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet; out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet; out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet; out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet; out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet; out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet; out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet; out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet; return true; } bool identity(const Matrix* m) { if (m->e11 != 1.0f || m->e12 != 0.0f || m->e13 != 0.0f || m->e21 != 0.0f || m->e22 != 1.0f || m->e23 != 0.0f || m->e31 != 0.0f || m->e32 != 0.0f || m->e33 != 1.0f) { return false; } return true; } void rotate(Matrix* m, float degree) { if (degree == 0.0f) return; auto radian = degree / 180.0f * MATH_PI; auto cosVal = cosf(radian); auto sinVal = sinf(radian); m->e12 = m->e11 * -sinVal; m->e11 *= cosVal; m->e21 = m->e22 * sinVal; m->e22 *= cosVal; } Matrix operator*(const Matrix& lhs, const Matrix& rhs) { Matrix m; m.e11 = lhs.e11 * rhs.e11 + lhs.e12 * rhs.e21 + lhs.e13 * rhs.e31; m.e12 = lhs.e11 * rhs.e12 + lhs.e12 * rhs.e22 + lhs.e13 * rhs.e32; m.e13 = lhs.e11 * rhs.e13 + lhs.e12 * rhs.e23 + lhs.e13 * rhs.e33; m.e21 = lhs.e21 * rhs.e11 + lhs.e22 * rhs.e21 + lhs.e23 * rhs.e31; m.e22 = lhs.e21 * rhs.e12 + lhs.e22 * rhs.e22 + lhs.e23 * rhs.e32; m.e23 = lhs.e21 * rhs.e13 + lhs.e22 * rhs.e23 + lhs.e23 * rhs.e33; m.e31 = lhs.e31 * rhs.e11 + lhs.e32 * rhs.e21 + lhs.e33 * rhs.e31; m.e32 = lhs.e31 * rhs.e12 + lhs.e32 * rhs.e22 + lhs.e33 * rhs.e32; m.e33 = lhs.e31 * rhs.e13 + lhs.e32 * rhs.e23 + lhs.e33 * rhs.e33; return m; } bool operator==(const Matrix& lhs, const Matrix& rhs) { if (!tvg::equal(lhs.e11, rhs.e11) || !tvg::equal(lhs.e12, rhs.e12) || !tvg::equal(lhs.e13, rhs.e13) || !tvg::equal(lhs.e21, rhs.e21) || !tvg::equal(lhs.e22, rhs.e22) || !tvg::equal(lhs.e23, rhs.e23) || !tvg::equal(lhs.e31, rhs.e31) || !tvg::equal(lhs.e32, rhs.e32) || !tvg::equal(lhs.e33, rhs.e33)) { return false; } return true; } void operator*=(Point& pt, const Matrix& m) { auto tx = pt.x * m.e11 + pt.y * m.e12 + m.e13; auto ty = pt.x * m.e21 + pt.y * m.e22 + m.e23; pt.x = tx; pt.y = ty; } Point operator*(const Point& pt, const Matrix& m) { auto tx = pt.x * m.e11 + pt.y * m.e12 + m.e13; auto ty = pt.x * m.e21 + pt.y * m.e22 + m.e23; return {tx, ty}; } float Line::length() const { return _lineLength(pt1, pt2); } void Line::split(float at, Line& left, Line& right) const { auto len = length(); auto dx = ((pt2.x - pt1.x) / len) * at; auto dy = ((pt2.y - pt1.y) / len) * at; left.pt1 = pt1; left.pt2.x = left.pt1.x + dx; left.pt2.y = left.pt1.y + dy; right.pt1 = left.pt2; right.pt2 = pt2; } void Bezier::split(Bezier& left, Bezier& right) const { auto c = (ctrl1.x + ctrl2.x) * 0.5f; left.ctrl1.x = (start.x + ctrl1.x) * 0.5f; right.ctrl2.x = (ctrl2.x + end.x) * 0.5f; left.start.x = start.x; right.end.x = end.x; left.ctrl2.x = (left.ctrl1.x + c) * 0.5f; right.ctrl1.x = (right.ctrl2.x + c) * 0.5f; left.end.x = right.start.x = (left.ctrl2.x + right.ctrl1.x) * 0.5f; c = (ctrl1.y + ctrl2.y) * 0.5f; left.ctrl1.y = (start.y + ctrl1.y) * 0.5f; right.ctrl2.y = (ctrl2.y + end.y) * 0.5f; left.start.y = start.y; right.end.y = end.y; left.ctrl2.y = (left.ctrl1.y + c) * 0.5f; right.ctrl1.y = (right.ctrl2.y + c) * 0.5f; left.end.y = right.start.y = (left.ctrl2.y + right.ctrl1.y) * 0.5f; } void Bezier::split(float at, Bezier& left, Bezier& right) const { right = *this; auto t = right.at(at, right.length()); right.split(t, left); } float Bezier::length() const { return _bezLength(*this, _lineLength); } float Bezier::lengthApprox() const { return _bezLength(*this, _lineLengthApprox); } void Bezier::split(float at, Bezier& left) { left.start = start; left.ctrl1.x = start.x + at * (ctrl1.x - start.x); left.ctrl1.y = start.y + at * (ctrl1.y - start.y); left.ctrl2.x = ctrl1.x + at * (ctrl2.x - ctrl1.x); //temporary holding spot left.ctrl2.y = ctrl1.y + at * (ctrl2.y - ctrl1.y); //temporary holding spot ctrl2.x = ctrl2.x + at * (end.x - ctrl2.x); ctrl2.y = ctrl2.y + at * (end.y - ctrl2.y); ctrl1.x = left.ctrl2.x + at * (ctrl2.x - left.ctrl2.x); ctrl1.y = left.ctrl2.y + at * (ctrl2.y - left.ctrl2.y); left.ctrl2.x = left.ctrl1.x + at * (left.ctrl2.x - left.ctrl1.x); left.ctrl2.y = left.ctrl1.y + at * (left.ctrl2.y - left.ctrl1.y); left.end.x = start.x = left.ctrl2.x + at * (ctrl1.x - left.ctrl2.x); left.end.y = start.y = left.ctrl2.y + at * (ctrl1.y - left.ctrl2.y); } float Bezier::at(float at, float length) const { return _bezAt(*this, at, length, _lineLength); } float Bezier::atApprox(float at, float length) const { return _bezAt(*this, at, length, _lineLengthApprox); } Point Bezier::at(float t) const { Point cur; auto it = 1.0f - t; auto ax = start.x * it + ctrl1.x * t; auto bx = ctrl1.x * it + ctrl2.x * t; auto cx = ctrl2.x * it + end.x * t; ax = ax * it + bx * t; bx = bx * it + cx * t; cur.x = ax * it + bx * t; float ay = start.y * it + ctrl1.y * t; float by = ctrl1.y * it + ctrl2.y * t; float cy = ctrl2.y * it + end.y * t; ay = ay * it + by * t; by = by * it + cy * t; cur.y = ay * it + by * t; return cur; } float Bezier::angle(float t) const { if (t < 0 || t > 1) return 0; //derivate // p'(t) = 3 * (-(1-2t+t^2) * p0 + (1 - 4 * t + 3 * t^2) * p1 + (2 * t - 3 * // t^2) * p2 + t^2 * p3) float mt = 1.0f - t; float d = t * t; float a = -mt * mt; float b = 1 - 4 * t + 3 * d; float c = 2 * t - 3 * d; Point pt ={a * start.x + b * ctrl1.x + c * ctrl2.x + d * end.x, a * start.y + b * ctrl1.y + c * ctrl2.y + d * end.y}; pt.x *= 3; pt.y *= 3; return rad2deg(tvg::atan2(pt.y, pt.x)); } }