/* * Copyright (c) 2020-2021 Samsung Electronics Co., Ltd. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgSwCommon.h" #include "tvgRender.h" #include #include #include /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ static uint32_t _colorAlpha(uint32_t c) { return (c >> 24); } static uint32_t _abgrJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) { return (a << 24 | b << 16 | g << 8 | r); } static uint32_t _argbJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) { return (a << 24 | r << 16 | g << 8 | b); } static bool _inverse(const Matrix* transform, Matrix* invM) { // computes the inverse of a matrix m auto det = transform->e11 * (transform->e22 * transform->e33 - transform->e32 * transform->e23) - transform->e12 * (transform->e21 * transform->e33 - transform->e23 * transform->e31) + transform->e13 * (transform->e21 * transform->e32 - transform->e22 * transform->e31); if (fabsf(det) < FLT_EPSILON) return false; auto invDet = 1 / det; invM->e11 = (transform->e22 * transform->e33 - transform->e32 * transform->e23) * invDet; invM->e12 = (transform->e13 * transform->e32 - transform->e12 * transform->e33) * invDet; invM->e13 = (transform->e12 * transform->e23 - transform->e13 * transform->e22) * invDet; invM->e21 = (transform->e23 * transform->e31 - transform->e21 * transform->e33) * invDet; invM->e22 = (transform->e11 * transform->e33 - transform->e13 * transform->e31) * invDet; invM->e23 = (transform->e21 * transform->e13 - transform->e11 * transform->e23) * invDet; invM->e31 = (transform->e21 * transform->e32 - transform->e31 * transform->e22) * invDet; invM->e32 = (transform->e31 * transform->e12 - transform->e11 * transform->e32) * invDet; invM->e33 = (transform->e11 * transform->e22 - transform->e21 * transform->e12) * invDet; return true; } static bool _identify(const Matrix* transform) { if (transform) { if (transform->e11 != 1.0f || transform->e12 != 0.0f || transform->e13 != 0.0f || transform->e21 != 0.0f || transform->e22 != 1.0f || transform->e23 != 0.0f || transform->e31 != 0.0f || transform->e32 != 0.0f || transform->e33 != 1.0f) { return false; } } return true; } static bool _translucent(const SwSurface* surface, uint8_t a) { if (a < 255) return true; if (!surface->compositor || surface->compositor->method == CompositeMethod::None) return false; return true; } /************************************************************************/ /* Rect */ /************************************************************************/ static bool _translucentRect(SwSurface* surface, const SwBBox& region, uint32_t color) { auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto ialpha = 255 - surface->blender.alpha(color); for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; for (uint32_t x = 0; x < w; ++x) { dst[x] = color + ALPHA_BLEND(dst[x], ialpha); } } return true; } static bool _translucentRectAlphaMask(SwSurface* surface, const SwBBox& region, uint32_t color) { auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); #ifdef THORVG_LOG_ENABLED cout <<"SW_ENGINE: Rectangle Alpha Mask Composition" << endl; #endif auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; //compositor buffer for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; auto cmp = &cbuffer[y * surface->stride]; for (uint32_t x = 0; x < w; ++x) { auto tmp = ALPHA_BLEND(color, surface->blender.alpha(*cmp)); dst[x] = tmp + ALPHA_BLEND(dst[x], 255 - surface->blender.alpha(tmp)); ++cmp; } } return true; } static bool _translucentRectInvAlphaMask(SwSurface* surface, const SwBBox& region, uint32_t color) { auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); #ifdef THORVG_LOG_ENABLED cout <<"SW_ENGINE: Rectangle Inverse Alpha Mask Composition" << endl; #endif auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; //compositor buffer for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; auto cmp = &cbuffer[y * surface->stride]; for (uint32_t x = 0; x < w; ++x) { auto tmp = ALPHA_BLEND(color, 255 - surface->blender.alpha(*cmp)); dst[x] = tmp + ALPHA_BLEND(dst[x], 255 - surface->blender.alpha(tmp)); ++cmp; } } return true; } static bool _rasterTranslucentRect(SwSurface* surface, const SwBBox& region, uint32_t color) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _translucentRectAlphaMask(surface, region, color); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _translucentRectInvAlphaMask(surface, region, color); } } return _translucentRect(surface, region, color); } static bool _rasterSolidRect(SwSurface* surface, const SwBBox& region, uint32_t color) { auto buffer = surface->buffer + (region.min.y * surface->stride); auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); for (uint32_t y = 0; y < h; ++y) { rasterRGBA32(buffer + y * surface->stride, color, region.min.x, w); } return true; } /************************************************************************/ /* Rle */ /************************************************************************/ static bool _translucentRle(SwSurface* surface, const SwRleData* rle, uint32_t color) { auto span = rle->spans; uint32_t src; for (uint32_t i = 0; i < rle->size; ++i) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; if (span->coverage < 255) src = ALPHA_BLEND(color, span->coverage); else src = color; auto ialpha = 255 - surface->blender.alpha(src); for (uint32_t x = 0; x < span->len; ++x) { dst[x] = src + ALPHA_BLEND(dst[x], ialpha); } ++span; } return true; } static bool _translucentRleAlphaMask(SwSurface* surface, const SwRleData* rle, uint32_t color) { #ifdef THORVG_LOG_ENABLED cout <<"SW_ENGINE: Rle Alpha Mask Composition" << endl; #endif auto span = rle->spans; uint32_t src; auto cbuffer = surface->compositor->image.data; for (uint32_t i = 0; i < rle->size; ++i) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; if (span->coverage < 255) src = ALPHA_BLEND(color, span->coverage); else src = color; for (uint32_t x = 0; x < span->len; ++x) { auto tmp = ALPHA_BLEND(src, surface->blender.alpha(*cmp)); dst[x] = tmp + ALPHA_BLEND(dst[x], 255 - surface->blender.alpha(tmp)); ++cmp; } ++span; } return true; } static bool _translucentRleInvAlphaMask(SwSurface* surface, SwRleData* rle, uint32_t color) { #ifdef THORVG_LOG_ENABLED cout <<"SW_ENGINE: Rle Inverse Alpha Mask Composition" << endl; #endif auto span = rle->spans; uint32_t src; auto cbuffer = surface->compositor->image.data; for (uint32_t i = 0; i < rle->size; ++i) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; if (span->coverage < 255) src = ALPHA_BLEND(color, span->coverage); else src = color; for (uint32_t x = 0; x < span->len; ++x) { auto tmp = ALPHA_BLEND(src, 255 - surface->blender.alpha(*cmp)); dst[x] = tmp + ALPHA_BLEND(dst[x], 255 - surface->blender.alpha(tmp)); ++cmp; } ++span; } return true; } static bool _rasterTranslucentRle(SwSurface* surface, SwRleData* rle, uint32_t color) { if (!rle) return false; if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _translucentRleAlphaMask(surface, rle, color); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _translucentRleInvAlphaMask(surface, rle, color); } } return _translucentRle(surface, rle, color); } static bool _rasterSolidRle(SwSurface* surface, const SwRleData* rle, uint32_t color) { if (!rle) return false; auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i) { if (span->coverage == 255) { rasterRGBA32(surface->buffer + span->y * surface->stride, color, span->x, span->len); } else { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto src = ALPHA_BLEND(color, span->coverage); auto ialpha = 255 - span->coverage; for (uint32_t i = 0; i < span->len; ++i) { dst[i] = src + ALPHA_BLEND(dst[i], ialpha); } } ++span; } return true; } /************************************************************************/ /* Image */ /************************************************************************/ static bool _rasterTranslucentImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity) { auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto src = img + span->x + span->y * w; //TODO: need to use image's stride auto alpha = ALPHA_MULTIPLY(span->coverage, opacity); for (uint32_t x = 0; x < span->len; ++x, ++dst, ++src) { *src = ALPHA_BLEND(*src, alpha); *dst = *src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(*src)); } } return true; } static bool _rasterTranslucentImageRle(SwSurface* surface, const SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const Matrix* invTransform) { auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto ey1 = span->y * invTransform->e12 + invTransform->e13; auto ey2 = span->y * invTransform->e22 + invTransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto alpha = ALPHA_MULTIPLY(span->coverage, opacity); for (uint32_t x = 0; x < span->len; ++x, ++dst) { auto rX = static_cast(roundf((span->x + x) * invTransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * invTransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = ALPHA_BLEND(img[rY * w + rX], alpha); //TODO: need to use image's stride *dst = src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(src)); } } return true; } static bool _rasterImageRle(SwSurface* surface, SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h) { auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto src = img + span->x + span->y * w; //TODO: need to use image's stride for (uint32_t x = 0; x < span->len; ++x, ++dst, ++src) { *src = ALPHA_BLEND(*src, span->coverage); *dst = *src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(*src)); } } return true; } static bool _rasterImageRle(SwSurface* surface, SwRleData* rle, uint32_t *img, uint32_t w, uint32_t h, const Matrix* invTransform) { auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto ey1 = span->y * invTransform->e12 + invTransform->e13; auto ey2 = span->y * invTransform->e22 + invTransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; for (uint32_t x = 0; x < span->len; ++x, ++dst) { auto rX = static_cast(roundf((span->x + x) * invTransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * invTransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = ALPHA_BLEND(img[rY * w + rX], span->coverage); //TODO: need to use image's stride *dst = src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(src)); } } return true; } static bool _translucentImage(SwSurface* surface, const uint32_t *img, uint32_t w, TVG_UNUSED uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* invTransform) { auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto ey1 = y * invTransform->e12 + invTransform->e13; auto ey2 = y * invTransform->e22 + invTransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto rX = static_cast(roundf(x * invTransform->e11 + ey1)); auto rY = static_cast(roundf(x * invTransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = ALPHA_BLEND(img[rX + (rY * w)], opacity); //TODO: need to use image's stride *dst = src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(src)); } dbuffer += surface->stride; } return true; } static bool _translucentImageAlphaMask(SwSurface* surface, const uint32_t *img, uint32_t w, TVG_UNUSED uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* invTransform) { #ifdef THORVG_LOG_ENABLED cout <<"SW_ENGINE: Transformed Image Alpha Mask Composition" << endl; #endif auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto cbuffer = &surface->compositor->image.data[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto cmp = cbuffer; float ey1 = y * invTransform->e12 + invTransform->e13; float ey2 = y * invTransform->e22 + invTransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { auto rX = static_cast(roundf(x * invTransform->e11 + ey1)); auto rY = static_cast(roundf(x * invTransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto tmp = ALPHA_BLEND(img[rX + (rY * w)], ALPHA_MULTIPLY(opacity, surface->blender.alpha(*cmp))); //TODO: need to use image's stride *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } dbuffer += surface->stride; cbuffer += surface->stride; } return true; } static bool _translucentImageInvAlphaMask(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* invTransform) { #ifdef THORVG_LOG_ENABLED cout <<"SW_ENGINE: Transformed Image Inverse Alpha Mask Composition" << endl; #endif auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto cbuffer = &surface->compositor->image.data[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto cmp = cbuffer; float ey1 = y * invTransform->e12 + invTransform->e13; float ey2 = y * invTransform->e22 + invTransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { auto rX = static_cast(roundf(x * invTransform->e11 + ey1)); auto rY = static_cast(roundf(x * invTransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto tmp = ALPHA_BLEND(img[rX + (rY * w)], ALPHA_MULTIPLY(opacity, 255 - surface->blender.alpha(*cmp))); //TODO: need to use image's stride *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } dbuffer += surface->stride; cbuffer += surface->stride; } return true; } static bool _rasterTranslucentImage(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region, const Matrix* invTransform) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _translucentImageAlphaMask(surface, img, w, h, opacity, region, invTransform); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _translucentImageInvAlphaMask(surface, img, w, h, opacity, region, invTransform); } } return _translucentImage(surface, img, w, h, opacity, region, invTransform); } static bool _translucentImage(SwSurface* surface, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region) { auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto sbuffer = img + region.min.x + region.min.y * w; //TODO: need to use image's stride for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto src = sbuffer; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) { auto p = ALPHA_BLEND(*src, opacity); *dst = p + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(p)); } dbuffer += surface->stride; sbuffer += w; //TODO: need to use image's stride } return true; } static bool _translucentImageAlphaMask(SwSurface* surface, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region) { auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h2 = static_cast(region.max.y - region.min.y); auto w2 = static_cast(region.max.x - region.min.x); #ifdef THORVG_LOG_ENABLED cout <<"SW_ENGINE: Image Alpha Mask Composition" << endl; #endif auto sbuffer = img + (region.min.y * w) + region.min.x; auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; //compositor buffer for (uint32_t y = 0; y < h2; ++y) { auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w2; ++x, ++dst, ++src, ++cmp) { auto tmp = ALPHA_BLEND(*src, ALPHA_MULTIPLY(opacity, surface->blender.alpha(*cmp))); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } buffer += surface->stride; cbuffer += surface->stride; sbuffer += w; //TODO: need to use image's stride } return true; } static bool _translucentImageInvAlphaMask(SwSurface* surface, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region) { auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h2 = static_cast(region.max.y - region.min.y); auto w2 = static_cast(region.max.x - region.min.x); #ifdef THORVG_LOG_ENABLED cout <<"SW_ENGINE: Image Inverse Alpha Mask Composition" << endl; #endif auto sbuffer = img + (region.min.y * w) + region.min.x; auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; //compositor buffer for (uint32_t y = 0; y < h2; ++y) { auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w2; ++x, ++dst, ++src, ++cmp) { auto tmp = ALPHA_BLEND(*src, ALPHA_MULTIPLY(opacity, 255 - surface->blender.alpha(*cmp))); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } buffer += surface->stride; cbuffer += surface->stride; sbuffer += w; //TODO: need to use image's stride } return true; } static bool _rasterTranslucentImage(SwSurface* surface, uint32_t *img, uint32_t w, uint32_t h, uint32_t opacity, const SwBBox& region) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _translucentImageAlphaMask(surface, img, w, h, opacity, region); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _translucentImageInvAlphaMask(surface, img, w, h, opacity, region); } } return _translucentImage(surface, img, w, h, opacity, region); } static bool _rasterImage(SwSurface* surface, uint32_t *img, uint32_t w, TVG_UNUSED uint32_t h, const SwBBox& region) { auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto sbuffer = img + region.min.x + region.min.y * w; //TODO: need to use image's stride for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto src = sbuffer; for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { *dst = *src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(*src)); } dbuffer += surface->stride; sbuffer += w; //TODO: need to use image's stride } return true; } static bool _rasterImage(SwSurface* surface, const uint32_t *img, uint32_t w, uint32_t h, const SwBBox& region, const Matrix* invTransform) { for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = &surface->buffer[y * surface->stride + region.min.x]; auto ey1 = y * invTransform->e12 + invTransform->e13; auto ey2 = y * invTransform->e22 + invTransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto rX = static_cast(roundf(x * invTransform->e11 + ey1)); auto rY = static_cast(roundf(x * invTransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = img[rX + (rY * w)]; //TODO: need to use image's stride *dst = src + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(src)); } } return true; } /************************************************************************/ /* Gradient */ /************************************************************************/ static bool _rasterTranslucentLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto sbuffer = static_cast(alloca(w * sizeof(uint32_t))); if (!sbuffer) return false; if (surface->compositor) { auto method = surface->compositor->method; auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; if (method == CompositeMethod::AlphaMask) { for (uint32_t y = 0; y < h; ++y) { fillFetchLinear(fill, sbuffer, region.min.y + y, region.min.x, w); auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } buffer += surface->stride; cbuffer += surface->stride; } return true; } else if (method == CompositeMethod::InvAlphaMask) { for (uint32_t y = 0; y < h; ++y) { fillFetchLinear(fill, sbuffer, region.min.y + y, region.min.x, w); auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } buffer += surface->stride; cbuffer += surface->stride; } return true; } } for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; fillFetchLinear(fill, sbuffer, region.min.y + y, region.min.x, w); for (uint32_t x = 0; x < w; ++x) { dst[x] = sbuffer[x] + ALPHA_BLEND(dst[x], 255 - surface->blender.alpha(sbuffer[x])); } } return true; } static bool _rasterOpaqueLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); for (uint32_t y = 0; y < h; ++y) { fillFetchLinear(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w); } return true; } static bool _rasterTranslucentRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (fill->radial.a < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto sbuffer = static_cast(alloca(w * sizeof(uint32_t))); if (!sbuffer) return false; if (surface->compositor) { auto method = surface->compositor->method; auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; if (method == CompositeMethod::AlphaMask) { for (uint32_t y = 0; y < h; ++y) { fillFetchRadial(fill, sbuffer, region.min.y + y, region.min.x, w); auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } buffer += surface->stride; cbuffer += surface->stride; } return true; } else if (method == CompositeMethod::InvAlphaMask) { for (uint32_t y = 0; y < h; ++y) { fillFetchRadial(fill, sbuffer, region.min.y + y, region.min.x, w); auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } buffer += surface->stride; cbuffer += surface->stride; } return true; } } for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; fillFetchRadial(fill, sbuffer, region.min.y + y, region.min.x, w); for (uint32_t x = 0; x < w; ++x) { dst[x] = sbuffer[x] + ALPHA_BLEND(dst[x], 255 - surface->blender.alpha(sbuffer[x])); } } return true; } static bool _rasterOpaqueRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (fill->radial.a < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; fillFetchRadial(fill, dst, region.min.y + y, region.min.x, w); } return true; } static bool _translucentLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto span = rle->spans; auto buffer = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buffer) return false; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; fillFetchLinear(fill, buffer, span->y, span->x, span->len); if (span->coverage == 255) { for (uint32_t i = 0; i < span->len; ++i) { dst[i] = buffer[i] + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(buffer[i])); } } else { for (uint32_t i = 0; i < span->len; ++i) { auto tmp = ALPHA_BLEND(buffer[i], span->coverage); dst[i] = tmp + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(tmp)); } } } return true; } static bool _translucentLinearGradientRleAlphaMask(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto span = rle->spans; auto cbuffer = surface->compositor->image.data; auto buffer = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buffer) return false; for (uint32_t i = 0; i < rle->size; ++i, ++span) { fillFetchLinear(fill, buffer, span->y, span->x, span->len); auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto src = buffer; if (span->coverage == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } } else { auto ialpha = 255 - span->coverage; for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp)); tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } } } return true; } static bool _translucentLinearGradientRleInvAlphaMask(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto span = rle->spans; auto cbuffer = surface->compositor->image.data; auto buffer = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buffer) return false; for (uint32_t i = 0; i < rle->size; ++i, ++span) { fillFetchLinear(fill, buffer, span->y, span->x, span->len); auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto src = buffer; if (span->coverage == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } } else { auto ialpha = 255 - span->coverage; for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp)); tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } } } return true; } static bool _rasterTranslucentLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (!rle) return false; if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _translucentLinearGradientRleAlphaMask(surface, rle, fill); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _translucentLinearGradientRleInvAlphaMask(surface, rle, fill); } } return _translucentLinearGradientRle(surface, rle, fill); } static bool _rasterOpaqueLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto buf = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buf) return false; auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i) { if (span->coverage == 255) { fillFetchLinear(fill, surface->buffer + span->y * surface->stride + span->x, span->y, span->x, span->len); } else { fillFetchLinear(fill, buf, span->y, span->x, span->len); auto ialpha = 255 - span->coverage; auto dst = &surface->buffer[span->y * surface->stride + span->x]; for (uint32_t i = 0; i < span->len; ++i) { dst[i] = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(dst[i], ialpha); } } ++span; } return true; } static bool _rasterTranslucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->radial.a < FLT_EPSILON) return false; auto buf = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buf) return false; auto span = rle->spans; if (surface->compositor) { auto method = surface->compositor->method; auto cbuffer = surface->compositor->image.data; if (method == CompositeMethod::AlphaMask) { for (uint32_t i = 0; i < rle->size; ++i, ++span) { fillFetchRadial(fill, buf, span->y, span->x, span->len); auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto src = buf; if (span->coverage == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } } else { auto ialpha = 255 - span->coverage; for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp)); tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } } } return true; } else if (method == CompositeMethod::InvAlphaMask) { for (uint32_t i = 0; i < rle->size; ++i, ++span) { fillFetchRadial(fill, buf, span->y, span->x, span->len); auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto src = buf; if (span->coverage == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } } else { auto ialpha = 255 - span->coverage; for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp)); tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha); *dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp)); } } } return true; } } for (uint32_t i = 0; i < rle->size; ++i) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; fillFetchRadial(fill, buf, span->y, span->x, span->len); if (span->coverage == 255) { for (uint32_t i = 0; i < span->len; ++i) { dst[i] = buf[i] + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(buf[i])); } } else { for (uint32_t i = 0; i < span->len; ++i) { auto tmp = ALPHA_BLEND(buf[i], span->coverage); dst[i] = tmp + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(tmp)); } } ++span; } return true; } static bool _rasterOpaqueRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->radial.a < FLT_EPSILON) return false; auto buf = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buf) return false; auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; if (span->coverage == 255) { fillFetchRadial(fill, dst, span->y, span->x, span->len); } else { fillFetchRadial(fill, buf, span->y, span->x, span->len); auto ialpha = 255 - span->coverage; for (uint32_t i = 0; i < span->len; ++i) { dst[i] = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(dst[i], ialpha); } } ++span; } return true; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ bool rasterCompositor(SwSurface* surface) { if (surface->cs == SwCanvas::ABGR8888) { surface->blender.alpha = _colorAlpha; surface->blender.join = _abgrJoin; } else if (surface->cs == SwCanvas::ARGB8888) { surface->blender.alpha = _colorAlpha; surface->blender.join = _argbJoin; } else { //What Color Space ??? return false; } return true; } bool rasterGradientShape(SwSurface* surface, SwShape* shape, unsigned id) { if (!shape->fill) return false; auto translucent = shape->fill->translucent || (surface->compositor && surface->compositor->method != CompositeMethod::None); //Fast Track if (shape->rect) { if (id == FILL_ID_LINEAR) { if (translucent) return _rasterTranslucentLinearGradientRect(surface, shape->bbox, shape->fill); return _rasterOpaqueLinearGradientRect(surface, shape->bbox, shape->fill); } else { if (translucent) return _rasterTranslucentRadialGradientRect(surface, shape->bbox, shape->fill); return _rasterOpaqueRadialGradientRect(surface, shape->bbox, shape->fill); } } else { if (!shape->rle) return false; if (id == FILL_ID_LINEAR) { if (translucent) return _rasterTranslucentLinearGradientRle(surface, shape->rle, shape->fill); return _rasterOpaqueLinearGradientRle(surface, shape->rle, shape->fill); } else { if (translucent) return _rasterTranslucentRadialGradientRle(surface, shape->rle, shape->fill); return _rasterOpaqueRadialGradientRle(surface, shape->rle, shape->fill); } } return false; } bool rasterSolidShape(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (a < 255) { r = ALPHA_MULTIPLY(r, a); g = ALPHA_MULTIPLY(g, a); b = ALPHA_MULTIPLY(b, a); } auto color = surface->blender.join(r, g, b, a); auto translucent = _translucent(surface, a); //Fast Track if (shape->rect) { if (translucent) return _rasterTranslucentRect(surface, shape->bbox, color); return _rasterSolidRect(surface, shape->bbox, color); } if (translucent) { return _rasterTranslucentRle(surface, shape->rle, color); } return _rasterSolidRle(surface, shape->rle, color); } bool rasterStroke(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (a < 255) { r = ALPHA_MULTIPLY(r, a); g = ALPHA_MULTIPLY(g, a); b = ALPHA_MULTIPLY(b, a); } auto color = surface->blender.join(r, g, b, a); auto translucent = _translucent(surface, a); if (translucent) return _rasterTranslucentRle(surface, shape->strokeRle, color); return _rasterSolidRle(surface, shape->strokeRle, color); } bool rasterGradientStroke(SwSurface* surface, SwShape* shape, unsigned id) { if (!shape->stroke || !shape->stroke->fill || !shape->strokeRle) return false; auto translucent = shape->stroke->fill->translucent || (surface->compositor && surface->compositor->method != CompositeMethod::None); if (id == FILL_ID_LINEAR) { if (translucent) return _rasterTranslucentLinearGradientRle(surface, shape->strokeRle, shape->stroke->fill); return _rasterOpaqueLinearGradientRle(surface, shape->strokeRle, shape->stroke->fill); } else { if (translucent) return _rasterTranslucentRadialGradientRle(surface, shape->strokeRle, shape->stroke->fill); return _rasterOpaqueRadialGradientRle(surface, shape->strokeRle, shape->stroke->fill); } return false; } bool rasterClear(SwSurface* surface) { if (!surface || !surface->buffer || surface->stride <= 0 || surface->w <= 0 || surface->h <= 0) return false; if (surface->w == surface->stride) { rasterRGBA32(surface->buffer, 0x00000000, 0, surface->w * surface->h); } else { for (uint32_t i = 0; i < surface->h; i++) { rasterRGBA32(surface->buffer + surface->stride * i, 0x00000000, 0, surface->w); } } return true; } bool rasterImage(SwSurface* surface, SwImage* image, const Matrix* transform, const SwBBox& bbox, uint32_t opacity) { Matrix invTransform; if (transform) { if (!_inverse(transform, &invTransform)) return false; } else invTransform = {1, 0, 0, 0, 1, 0, 0, 0, 1}; auto translucent = _translucent(surface, opacity); if (image->rle) { //Fast track if (_identify(transform)) { //OPTIMIZE ME: Support non transformed image. Only shifted image can use these routines. if (translucent) return _rasterTranslucentImageRle(surface, image->rle, image->data, image->w, image->h, opacity); return _rasterImageRle(surface, image->rle, image->data, image->w, image->h); } else { if (translucent) return _rasterTranslucentImageRle(surface, image->rle, image->data, image->w, image->h, opacity, &invTransform); return _rasterImageRle(surface, image->rle, image->data, image->w, image->h, &invTransform); } } else { //Fast track if (_identify(transform)) { //OPTIMIZE ME: Support non transformed image. Only shifted image can use these routines. if (translucent) return _rasterTranslucentImage(surface, image->data, image->w, image->h, opacity, bbox); else return _rasterImage(surface, image->data, image->w, image->h, bbox); } else { if (translucent) return _rasterTranslucentImage(surface, image->data, image->w, image->h, opacity, bbox, &invTransform); else return _rasterImage(surface, image->data, image->w, image->h, bbox, &invTransform); } } }