/* * Copyright (c) 2023 - 2025 the ThorVG project. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include #include "tvgCommon.h" #include "tvgMath.h" #include "tvgLottieInterpolator.h" /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ #define NEWTON_MIN_SLOPE 0.02f #define NEWTON_ITERATIONS 4 #define SUBDIVISION_PRECISION 0.0000001f #define SUBDIVISION_MAX_ITERATIONS 10 static inline float _constA(float aA1, float aA2) { return 1.0f - 3.0f * aA2 + 3.0f * aA1; } static inline float _constB(float aA1, float aA2) { return 3.0f * aA2 - 6.0f * aA1; } static inline float _constC(float aA1) { return 3.0f * aA1; } static inline float _getSlope(float t, float aA1, float aA2) { return 3.0f * _constA(aA1, aA2) * t * t + 2.0f * _constB(aA1, aA2) * t + _constC(aA1); } static inline float _calcBezier(float t, float aA1, float aA2) { return ((_constA(aA1, aA2) * t + _constB(aA1, aA2)) * t + _constC(aA1)) * t; } float LottieInterpolator::getTForX(float aX) { //Find interval where t lies auto intervalStart = 0.0f; auto currentSample = &samples[1]; auto lastSample = &samples[SPLINE_TABLE_SIZE - 1]; for (; currentSample != lastSample && *currentSample <= aX; ++currentSample) { intervalStart += SAMPLE_STEP_SIZE; } --currentSample; // t now lies between *currentSample and *currentSample+1 // Interpolate to provide an initial guess for t auto dist = (aX - *currentSample) / (*(currentSample + 1) - *currentSample); auto guessForT = intervalStart + dist * SAMPLE_STEP_SIZE; // Check the slope to see what strategy to use. If the slope is too small // Newton-Raphson iteration won't converge on a root so we use bisection // instead. auto initialSlope = _getSlope(guessForT, outTangent.x, inTangent.x); if (initialSlope >= NEWTON_MIN_SLOPE) return NewtonRaphsonIterate(aX, guessForT); else if (initialSlope == 0.0) return guessForT; else return binarySubdivide(aX, intervalStart, intervalStart + SAMPLE_STEP_SIZE); } float LottieInterpolator::binarySubdivide(float aX, float aA, float aB) { float x, t; int i = 0; do { t = aA + (aB - aA) / 2.0f; x = _calcBezier(t, outTangent.x, inTangent.x) - aX; if (x > 0.0f) aB = t; else aA = t; } while (fabsf(x) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS); return t; } float LottieInterpolator::NewtonRaphsonIterate(float aX, float aGuessT) { // Refine guess with Newton-Raphson iteration for (int i = 0; i < NEWTON_ITERATIONS; ++i) { // We're trying to find where f(t) = aX, // so we're actually looking for a root for: CalcBezier(t) - aX auto currentX = _calcBezier(aGuessT, outTangent.x, inTangent.x) - aX; auto currentSlope = _getSlope(aGuessT, outTangent.x, inTangent.x); if (currentSlope == 0.0f) return aGuessT; aGuessT -= currentX / currentSlope; } return aGuessT; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ float LottieInterpolator::progress(float t) { if (outTangent.x == outTangent.y && inTangent.x == inTangent.y) return t; return _calcBezier(getTForX(t), outTangent.y, inTangent.y); } void LottieInterpolator::set(const char* key, Point& inTangent, Point& outTangent) { if (key) this->key = strdup(key); this->inTangent = inTangent; this->outTangent = outTangent; if (outTangent.x == outTangent.y && inTangent.x == inTangent.y) return; //calculates sample values for (int i = 0; i < SPLINE_TABLE_SIZE; ++i) { samples[i] = _calcBezier(float(i) * SAMPLE_STEP_SIZE, outTangent.x, inTangent.x); } }