/* * Copyright (c) 2020-2021 Samsung Electronics Co., Ltd. All rights reserved. * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tvgMath.h" #include "tvgRender.h" #include "tvgSwCommon.h" #include "tvgSwRasterC.h" #include "tvgSwRasterAvx.h" #include "tvgSwRasterNeon.h" /************************************************************************/ /* Internal Class Implementation */ /************************************************************************/ constexpr auto DOWN_SCALE_TOLERANCE = 0.5f; static inline uint32_t _multiplyAlpha(uint32_t c, uint32_t a) { return ((c * a + 0xff) >> 8); } static uint32_t _colorAlpha(uint32_t c) { return (c >> 24); } static uint32_t _colorInvAlpha(uint32_t c) { return (~c >> 24); } static uint32_t _abgrJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) { return (a << 24 | b << 16 | g << 8 | r); } static uint32_t _argbJoin(uint8_t r, uint8_t g, uint8_t b, uint8_t a) { return (a << 24 | r << 16 | g << 8 | b); } static bool _translucent(const SwSurface* surface, uint8_t a) { if (a < 255) return true; if (!surface->compositor || surface->compositor->method == CompositeMethod::None) return false; return true; } static bool _compositing(const SwSurface* surface) { if (!surface->compositor || surface->compositor->method == CompositeMethod::None) return false; return true; } static uint32_t _halfScale(float scale) { auto halfScale = static_cast(0.5f / scale); if (halfScale == 0) halfScale = 1; return halfScale; } //Bilinear Interpolation static uint32_t _interpUpScaler(const uint32_t *img, uint32_t w, uint32_t h, float sx, float sy) { auto rx = static_cast(sx); auto ry = static_cast(sy); auto dx = static_cast((sx - rx) * 255.0f); auto dy = static_cast((sy - ry) * 255.0f); auto c1 = img[rx + (ry * w)]; auto c2 = img[(rx + 1) + (ry * w)]; auto c3 = img[(rx + 1) + ((ry + 1) * w)]; auto c4 = img[rx + ((ry + 1) * w)]; return COLOR_INTERPOLATE(COLOR_INTERPOLATE(c1, 255 - dx, c2, dx), 255 - dy, COLOR_INTERPOLATE(c4, 255 - dx, c3, dx), dy); } //2n x 2n Mean Kernel static uint32_t _interpDownScaler(const uint32_t *img, uint32_t w, uint32_t h, uint32_t rX, uint32_t rY, uint32_t n) { uint32_t c[4] = { 0 }; auto n2 = n * n; auto src = img + rX - n + (rY - n) * w; for (auto y = rY - n; y < rY + n; ++y) { auto p = src; for (auto x = rX - n; x < rX + n; ++x, ++p) { c[0] += *p >> 24; c[1] += (*p >> 16) & 0xff; c[2] += (*p >> 8) & 0xff; c[3] += *p & 0xff; } src += w; } for (auto i = 0; i < 4; ++i) { c[i] = (c[i] >> 2) / n2; } return (c[0] << 24) | (c[1] << 16) | (c[2] << 8) | c[3]; } /************************************************************************/ /* Rect */ /************************************************************************/ static bool _rasterTranslucentMaskedRect(SwSurface* surface, const SwBBox& region, uint32_t color, uint32_t (*blendMethod)(uint32_t)) { auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); TVGLOG("SW_ENGINE", "Translucent Masked Rect"); auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; //compositor buffer for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; auto cmp = &cbuffer[y * surface->stride]; for (uint32_t x = 0; x < w; ++x) { auto tmp = ALPHA_BLEND(color, blendMethod(*cmp)); dst[x] = tmp + ALPHA_BLEND(dst[x], surface->blender.ialpha(tmp)); ++cmp; } } return true; } static bool _rasterTranslucentRect(SwSurface* surface, const SwBBox& region, uint32_t color) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterTranslucentMaskedRect(surface, region, color, surface->blender.alpha); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterTranslucentMaskedRect(surface, region, color, surface->blender.ialpha); } } #if defined(THORVG_AVX_VECTOR_SUPPORT) return avxRasterTranslucentRect(surface, region, color); #elif defined(THORVG_NEON_VECTOR_SUPPORT) return neonRasterTranslucentRect(surface, region, color); #else return cRasterTranslucentRect(surface, region, color); #endif } static bool _rasterSolidRect(SwSurface* surface, const SwBBox& region, uint32_t color) { auto buffer = surface->buffer + (region.min.y * surface->stride); auto w = static_cast(region.max.x - region.min.x); auto h = static_cast(region.max.y - region.min.y); for (uint32_t y = 0; y < h; ++y) { rasterRGBA32(buffer + y * surface->stride, color, region.min.x, w); } return true; } /************************************************************************/ /* Rle */ /************************************************************************/ static bool _rasterTranslucentMaskedRle(SwSurface* surface, SwRleData* rle, uint32_t color, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Translucent Masked Rle"); auto span = rle->spans; uint32_t src; auto cbuffer = surface->compositor->image.data; for (uint32_t i = 0; i < rle->size; ++i) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; if (span->coverage < 255) src = ALPHA_BLEND(color, span->coverage); else src = color; for (uint32_t x = 0; x < span->len; ++x) { auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); dst[x] = tmp + ALPHA_BLEND(dst[x], surface->blender.ialpha(tmp)); ++cmp; } ++span; } return true; } static bool _rasterTranslucentRle(SwSurface* surface, SwRleData* rle, uint32_t color) { if (!rle) return false; if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterTranslucentMaskedRle(surface, rle, color, surface->blender.alpha); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterTranslucentMaskedRle(surface, rle, color, surface->blender.ialpha); } } #if defined(THORVG_AVX_VECTOR_SUPPORT) return avxRasterTranslucentRle(surface, rle, color); #elif defined(THORVG_NEON_VECTOR_SUPPORT) return neonRasterTranslucentRle(surface, rle, color); #else return cRasterTranslucentRle(surface, rle, color); #endif } static bool _rasterSolidRle(SwSurface* surface, const SwRleData* rle, uint32_t color) { if (!rle) return false; auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i) { if (span->coverage == 255) { rasterRGBA32(surface->buffer + span->y * surface->stride, color, span->x, span->len); } else { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto src = ALPHA_BLEND(color, span->coverage); auto ialpha = 255 - span->coverage; for (uint32_t i = 0; i < span->len; ++i) { dst[i] = src + ALPHA_BLEND(dst[i], ialpha); } } ++span; } return true; } /************************************************************************/ /* RLE Transformed RGBA Image */ /************************************************************************/ static bool _rasterTransformedMaskedRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, uint32_t opacity, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Transformed Masked Rle Image"); auto span = image->rle->spans; auto img = image->data; auto w = image->w; auto h = image->h; auto cbuffer = surface->compositor->image.data; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) { auto rX = static_cast(roundf((span->x + x) * itransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto tmp = ALPHA_BLEND(img[rY * image->stride + rX], blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) { auto rX = static_cast(roundf((span->x + x) * itransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = ALPHA_BLEND(img[rY * image->stride + rX], alpha); auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } } return true; } static bool _rasterTransformedTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, uint32_t opacity) { auto span = image->rle->spans; auto img = image->data; auto w = image->w; auto h = image->h; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); for (uint32_t x = 0; x < span->len; ++x, ++dst) { auto rX = static_cast(roundf((span->x + x) * itransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = ALPHA_BLEND(img[rY * image->stride + rX], alpha); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _rasterDownScaledMaskedRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, uint32_t opacity, uint32_t halfScale, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Down Scaled Masked Rle Image"); auto span = image->rle->spans; auto img = image->data; auto w = image->w; auto h = image->h; auto cbuffer = surface->compositor->image.data; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) { auto rX = static_cast(roundf((span->x + x) * itransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = img[rY * image->stride + rX]; else src = _interpDownScaler(img, image->stride, h, rX, rY, halfScale); auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) { auto rX = static_cast(roundf((span->x + x) * itransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rY * image->stride + rX], alpha); else src = ALPHA_BLEND(_interpDownScaler(img, image->stride, h, rX, rY, halfScale), alpha); auto tmp = ALPHA_BLEND(src, _multiplyAlpha(alpha, blendMethod(*cmp))); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } } return true; } static bool _rasterDownScaledTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, uint32_t opacity, uint32_t halfScale) { auto span = image->rle->spans; auto img = image->data; auto w = image->w; auto h = image->h; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); for (uint32_t x = 0; x < span->len; ++x, ++dst) { auto rX = static_cast(roundf((span->x + x) * itransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rY * image->stride + rX], alpha); else src = ALPHA_BLEND(_interpDownScaler(img, image->stride, h, rX, rY, halfScale), alpha); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _rasterUpScaledMaskedRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, uint32_t opacity, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Up Scaled Masked Rle Image"); auto span = image->rle->spans; auto img = image->data; auto w = image->w; auto h = image->h; auto cbuffer = surface->compositor->image.data; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) { auto fX = (span->x + x) * itransform->e11 + ey1; auto fY = (span->x + x) * itransform->e21 + ey2; auto rX = static_cast(roundf(fX)); auto rY = static_cast(roundf(fY)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX == w - 1 || rY == h - 1) src = img[rY * image->stride + rX]; else src = _interpUpScaler(img, image->stride, h, fX, fY); auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp) { auto fX = (span->x + x) * itransform->e11 + ey1; auto fY = (span->x + x) * itransform->e21 + ey2; auto rX = static_cast(roundf(fX)); auto rY = static_cast(roundf(fY)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX == w - 1 || rY == h - 1) src = ALPHA_BLEND(img[rY * image->stride + rX], alpha); else src = ALPHA_BLEND(_interpUpScaler(img, image->stride, h, fX, fY), alpha); auto tmp = ALPHA_BLEND(src, _multiplyAlpha(alpha, blendMethod(*cmp))); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } } return true; } static bool _rasterUpScaledTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, uint32_t opacity) { auto span = image->rle->spans; auto img = image->data; auto w = image->w; auto h = image->h; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); for (uint32_t x = 0; x < span->len; ++x, ++dst) { auto fX = (span->x + x) * itransform->e11 + ey1; auto fY = (span->x + x) * itransform->e21 + ey2; auto rX = static_cast(roundf(fX)); auto rY = static_cast(roundf(fY)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX == w - 1 || rY == h - 1) src = ALPHA_BLEND(img[rY * image->stride + rX], alpha); else src = ALPHA_BLEND(_interpUpScaler(img, image->stride, h, fX, fY), alpha); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _rasterTransformedRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform) { auto span = image->rle->spans; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; for (uint32_t x = 0; x < span->len; ++x, ++dst) { auto rX = static_cast(roundf((span->x + x) * itransform->e11 + ey1)); auto rY = static_cast(roundf((span->x + x) * itransform->e21 + ey2)); if (rX >= image->w || rY >= image->h) continue; auto src = ALPHA_BLEND(image->data[rY * image->stride + rX], span->coverage); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _rasterDownScaledRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, uint32_t halfScale) { auto span = image->rle->spans; auto img = image->data; auto w = image->w; auto h = image->h; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; for (uint32_t x = span->x; x < span->len; ++x, ++dst) { auto rX = static_cast(roundf(x * itransform->e11 + ey1)); auto rY = static_cast(roundf(x * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rY * image->stride + rX], span->coverage); else src = ALPHA_BLEND(_interpDownScaler(img, image->stride, h, rX, rY, halfScale), span->coverage); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _rasterUpScaledRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform) { auto span = image->rle->spans; auto img = image->data; auto w = image->w; auto h = image->h; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto ey1 = span->y * itransform->e12 + itransform->e13; auto ey2 = span->y * itransform->e22 + itransform->e23; auto dst = &surface->buffer[span->y * surface->stride + span->x]; for (uint32_t x = span->x; x < span->len; ++x, ++dst) { auto fX = x * itransform->e11 + ey1; auto fY = x * itransform->e21 + ey2; auto rX = static_cast(roundf(fX)); auto rY = static_cast(roundf(fY)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX == w - 1 || rY == h - 1) src = ALPHA_BLEND(img[rY * image->stride + rX], span->coverage); else src = ALPHA_BLEND(_interpUpScaler(img, image->stride, h, fX, fY), span->coverage); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _transformedRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* transform, uint32_t opacity) { auto halfScale = _halfScale(image->scale); Matrix itransform; if (transform && !mathInverse(transform, &itransform)) return false; if (_translucent(surface, opacity)) { //TODO: Blenders for the following scenarios: [Opacity / Composition / Opacity + Composition] //Transformed if (mathEqual(image->scale, 1.0f)) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterTransformedMaskedRleRGBAImage(surface, image, &itransform, opacity, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterTransformedMaskedRleRGBAImage(surface, image, &itransform, opacity, surface->blender.ialpha); } } return _rasterTransformedTranslucentRleRGBAImage(surface, image, &itransform, opacity); //Transformed + Down Scaled } else if (image->scale < DOWN_SCALE_TOLERANCE) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterDownScaledMaskedRleRGBAImage(surface, image, &itransform, opacity, halfScale, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterDownScaledMaskedRleRGBAImage(surface, image, &itransform, opacity, halfScale, surface->blender.ialpha); } } return _rasterDownScaledTranslucentRleRGBAImage(surface, image, &itransform, opacity, halfScale); //Transformed + Up Scaled } else { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterUpScaledMaskedRleRGBAImage(surface, image, &itransform, opacity, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterUpScaledMaskedRleRGBAImage(surface, image, &itransform, opacity, surface->blender.ialpha); } } return _rasterUpScaledTranslucentRleRGBAImage(surface, image, &itransform, opacity); } } else { //TODO: Blenders for the following scenarios: [No Composition / Composition] if (mathEqual(image->scale, 1.0f)) return _rasterTransformedRleRGBAImage(surface, image, &itransform); else if (image->scale < DOWN_SCALE_TOLERANCE) return _rasterDownScaledRleRGBAImage(surface, image, &itransform, halfScale); else return _rasterUpScaledRleRGBAImage(surface, image, &itransform); } } /************************************************************************/ /* RLE Scaled RGBA Image */ /************************************************************************/ static bool _rasterScaledMaskedRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale, uint32_t (*blendMethod)(uint32_t)) { auto span = image->rle->spans; //Center (Down-Scaled) if (image->scale < DOWN_SCALE_TOLERANCE) { for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto sy = static_cast(span->y * itransform->e22 + itransform->e23); if (sy >= image->h) continue; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &surface->compositor->image.data[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst, ++cmp) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto tmp = ALPHA_BLEND(_interpDownScaler(image->data, image->w, image->h, sx, sy, halfScale), blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } else { for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst, ++cmp) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->w, image->h, sx, sy, halfScale), alpha); auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } } //Center (Up-Scaled) } else { for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto sy = static_cast(span->y * itransform->e22 + itransform->e23); if (sy >= image->h) continue; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &surface->compositor->image.data[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst, ++cmp) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto tmp = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } else { for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst, ++cmp) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), alpha); auto tmp = ALPHA_BLEND(src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } } } return true; } static bool _rasterScaledTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale) { auto span = image->rle->spans; //Center (Down-Scaled) if (image->scale < DOWN_SCALE_TOLERANCE) { for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto sy = static_cast(span->y * itransform->e22 + itransform->e23); if (sy >= image->h) continue; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->w, image->h, sx, sy, halfScale), alpha); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Center (Up-Scaled) } else { for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto sy = static_cast(span->y * itransform->e22 + itransform->e23); if (sy >= image->h) continue; auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto alpha = _multiplyAlpha(span->coverage, opacity); for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), alpha); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } } return true; } static bool _rasterScaledRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale) { auto span = image->rle->spans; //Center (Down-Scaled) if (image->scale < DOWN_SCALE_TOLERANCE) { for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto sy = static_cast(span->y * itransform->e22 + itransform->e23); if (sy >= image->h) continue; auto dst = &surface->buffer[span->y * surface->stride + span->x]; if (span->coverage == 255) { for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto src = _interpDownScaler(image->data, image->w, image->h, sx, sy, halfScale); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } else { for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->w, image->h, sx, sy, halfScale), span->coverage); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } } //Center (Up-Scaled) } else { for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto sy = static_cast(span->y * itransform->e22 + itransform->e23); if (sy >= image->h) continue; auto dst = &surface->buffer[span->y * surface->stride + span->x]; if (span->coverage == 255) { for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto src = _interpUpScaler(image->data, image->w, image->h, sx, sy); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } else { for (uint32_t x = span->x; x < ((uint32_t)span->x) + span->len; ++x, ++dst) { auto sx = static_cast(x * itransform->e11 + itransform->e13); if (sx >= image->w) continue; auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), span->coverage); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } } } return true; } static bool _scaledRleRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint32_t opacity) { auto halfScale = _halfScale(image->scale); Matrix itransform; if (transform && !mathInverse(transform, &itransform)) return false; if (_translucent(surface, opacity)) { //TODO: Blenders for the following scenarios: [Opacity / Composition / Opacity + Composition] if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterScaledMaskedRleRGBAImage(surface, image, &itransform, region, opacity, halfScale, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterScaledMaskedRleRGBAImage(surface, image, &itransform, region, opacity, halfScale, surface->blender.ialpha); } } return _rasterScaledTranslucentRleRGBAImage(surface, image, &itransform, region, opacity, halfScale); } else { //TODO: Blenders for the following scenarios: [No Composition / Composition] return _rasterScaledRleRGBAImage(surface, image, &itransform, region, opacity, halfScale); } } /************************************************************************/ /* RLE Direct RGBA Image */ /************************************************************************/ static bool _rasterDirectMaskedRleRGBAImage(SwSurface* surface, const SwImage* image, uint32_t opacity, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Direct Masked Rle Image"); auto span = image->rle->spans; auto cbuffer = surface->compositor->image.data; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto img = image->data + (span->y + image->oy) * image->stride + (span->x + image->ox); auto alpha = _multiplyAlpha(span->coverage, opacity); if (alpha == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++img) { auto tmp = ALPHA_BLEND(*img, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++img) { auto tmp = ALPHA_BLEND(*img, _multiplyAlpha(alpha, blendMethod(*cmp))); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } } return true; } static bool _rasterDirectTranslucentRleRGBAImage(SwSurface* surface, const SwImage* image, uint32_t opacity) { auto span = image->rle->spans; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto img = image->data + (span->y + image->oy) * image->stride + (span->x + image->ox); auto alpha = _multiplyAlpha(span->coverage, opacity); for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { auto src = ALPHA_BLEND(*img, alpha); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _rasterDirectRleRGBAImage(SwSurface* surface, const SwImage* image) { auto span = image->rle->spans; for (uint32_t i = 0; i < image->rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto img = image->data + (span->y + image->oy) * image->stride + (span->x + image->ox); if (span->coverage == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { *dst = *img + ALPHA_BLEND(*dst, surface->blender.ialpha(*img)); } } else { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++img) { auto src = ALPHA_BLEND(*img, span->coverage); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } } return true; } static bool _directRleRGBAImage(SwSurface* surface, const SwImage* image, uint32_t opacity) { if (_translucent(surface, opacity)) { //TODO: Blenders for the following scenarios: [Opacity / Composition / Opacity + Composition] if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterDirectMaskedRleRGBAImage(surface, image, opacity, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterDirectMaskedRleRGBAImage(surface, image, opacity, surface->blender.ialpha); } } return _rasterDirectTranslucentRleRGBAImage(surface, image, opacity); } else { //TODO: Blenders for the following scenarios: [No Composition / Composition] return _rasterDirectRleRGBAImage(surface, image); } } /************************************************************************/ /* Transformed RGBA Image */ /************************************************************************/ static bool _rasterTransformedMaskedRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Transformed Masked Image"); auto img = image->data; auto w = image->w; auto h = image->h; auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto cbuffer = &surface->compositor->image.data[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto cmp = cbuffer; float ey1 = y * itransform->e12 + itransform->e13; float ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { auto rX = static_cast(roundf(x * itransform->e11 + ey1)); auto rY = static_cast(roundf(x * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = ALPHA_BLEND(img[rX + (rY * image->stride)], _multiplyAlpha(opacity, blendMethod(*cmp))); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } dbuffer += surface->stride; cbuffer += surface->stride; } return true; } static bool _rasterTransformedTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity) { auto img = image->data; auto w = image->w; auto h = image->h; auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto ey1 = y * itransform->e12 + itransform->e13; auto ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto rX = static_cast(roundf(x * itransform->e11 + ey1)); auto rY = static_cast(roundf(x * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = ALPHA_BLEND(img[rX + (rY * image->stride)], opacity); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } dbuffer += surface->stride; } return true; } static bool _rasterDownScaledMaskedRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Down Scaled Masked Image"); auto img = image->data; auto w = image->w; auto h = image->h; auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto cbuffer = &surface->compositor->image.data[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto cmp = cbuffer; float ey1 = y * itransform->e12 + itransform->e13; float ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { auto rX = static_cast(roundf(x * itransform->e11 + ey1)); auto rY = static_cast(roundf(x * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) { src = ALPHA_BLEND(img[rX + (rY * image->stride)], _multiplyAlpha(opacity, blendMethod(*cmp))); } else { src = ALPHA_BLEND(_interpDownScaler(img, image->stride, h, rX, rY, halfScale), _multiplyAlpha(opacity, blendMethod(*cmp))); } *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } dbuffer += surface->stride; cbuffer += surface->stride; } return true; } static bool _rasterDownScaledTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale) { auto img = image->data; auto w = image->w; auto h = image->h; auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto ey1 = y * itransform->e12 + itransform->e13; auto ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto rX = static_cast(roundf(x * itransform->e11 + ey1)); auto rY = static_cast(roundf(x * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = ALPHA_BLEND(img[rX + (rY * w)], opacity); else src = ALPHA_BLEND(_interpDownScaler(img, w, h, rX, rY, halfScale), opacity); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } dbuffer += surface->stride; } return true; } static bool _rasterUpScaledMaskedRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Up Scaled Masked Image"); auto img = image->data; auto w = image->w; auto h = image->h; auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto cbuffer = &surface->compositor->image.data[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto cmp = cbuffer; float ey1 = y * itransform->e12 + itransform->e13; float ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { auto fX = x * itransform->e11 + ey1; auto fY = x * itransform->e21 + ey2; auto rX = static_cast(roundf(fX)); auto rY = static_cast(roundf(fY)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX == w - 1 || rY == h - 1) src = ALPHA_BLEND(img[rX + (rY * image->stride)], _multiplyAlpha(opacity, blendMethod(*cmp))); else src = ALPHA_BLEND(_interpUpScaler(img, image->stride, h, fX, fY), _multiplyAlpha(opacity, blendMethod(*cmp))); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } dbuffer += surface->stride; cbuffer += surface->stride; } return true; } static bool _rasterUpScaledTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity) { auto img = image->data; auto w = image->w; auto h = image->h; auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto ey1 = y * itransform->e12 + itransform->e13; auto ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto fX = x * itransform->e11 + ey1; auto fY = x * itransform->e21 + ey2; auto rX = static_cast(roundf(fX)); auto rY = static_cast(roundf(fY)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX == w - 1 || rY == h - 1) src = ALPHA_BLEND(img[rX + (rY * image->stride)], opacity); else src = ALPHA_BLEND(_interpUpScaler(img, image->stride, h, fX, fY), opacity); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } dbuffer += surface->stride; } return true; } static bool _rasterTransformedRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region) { auto img = image->data; auto w = image->w; auto h = image->h; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = &surface->buffer[y * surface->stride + region.min.x]; auto ey1 = y * itransform->e12 + itransform->e13; auto ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto rX = static_cast(roundf(x * itransform->e11 + ey1)); auto rY = static_cast(roundf(x * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; auto src = img[rX + (rY * image->stride)]; *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _rasterDownScaledRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t halfScale) { auto img = image->data; auto w = image->w; auto h = image->h; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = &surface->buffer[y * surface->stride + region.min.x]; auto ey1 = y * itransform->e12 + itransform->e13; auto ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto rX = static_cast(roundf(x * itransform->e11 + ey1)); auto rY = static_cast(roundf(x * itransform->e21 + ey2)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX < halfScale || rY < halfScale || rX >= w - halfScale || rY >= h - halfScale) src = img[rX + (rY * w)]; else src = _interpDownScaler(img, w, h, rX, rY, halfScale); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _rasterUpScaledRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region) { auto img = image->data; auto w = image->w; auto h = image->h; for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = &surface->buffer[y * surface->stride + region.min.x]; auto ey1 = y * itransform->e12 + itransform->e13; auto ey2 = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto fX = x * itransform->e11 + ey1; auto fY = x * itransform->e21 + ey2; auto rX = static_cast(roundf(fX)); auto rY = static_cast(roundf(fY)); if (rX >= w || rY >= h) continue; uint32_t src; if (rX == w - 1 || rY == h - 1) src = img[rX + (rY * w)]; else src = _interpUpScaler(img, w, h, fX, fY); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } return true; } static bool _transformedRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint32_t opacity) { auto halfScale = _halfScale(image->scale); Matrix itransform; if (transform && !mathInverse(transform, &itransform)) return false; if (_translucent(surface, opacity)) { //TODO: Blenders for the following scenarios: [Opacity / Composition / Opacity + Composition] //Transformd if (mathEqual(image->scale, 1.0f)) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterTransformedMaskedRGBAImage(surface, image, &itransform, region, opacity, surface->blender.alpha); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterTransformedMaskedRGBAImage(surface, image, &itransform, region, opacity, surface->blender.ialpha); } } return _rasterTransformedTranslucentRGBAImage(surface, image, &itransform, region, opacity); //Transformed + DownScaled } else if (image->scale < DOWN_SCALE_TOLERANCE) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterDownScaledMaskedRGBAImage(surface, image, &itransform, region, opacity, halfScale, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterDownScaledMaskedRGBAImage(surface, image, &itransform, region, opacity, halfScale, surface->blender.ialpha); } } return _rasterDownScaledTranslucentRGBAImage(surface, image, &itransform, region, opacity, halfScale); //Transformed + UpScaled } else { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterUpScaledMaskedRGBAImage(surface, image, &itransform, region, opacity, surface->blender.alpha); }else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterUpScaledMaskedRGBAImage(surface, image, &itransform, region, opacity, surface->blender.ialpha); } } return _rasterUpScaledTranslucentRGBAImage(surface, image, &itransform, region, opacity); } } else { //TODO: Blenders for the following scenarios: [No Composition / Composition] if (mathEqual(image->scale, 1.0f)) return _rasterTransformedRGBAImage(surface, image, &itransform, region); else if (image->scale < DOWN_SCALE_TOLERANCE) return _rasterDownScaledRGBAImage(surface, image, &itransform, region, halfScale); else return _rasterUpScaledRGBAImage(surface, image, &itransform, region); } } /************************************************************************/ /*Scaled RGBA Image */ /************************************************************************/ static bool _rasterScaledMaskedRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Scaled Masked Image"); //Top, Bottom Lines SwCoord ys[2] = {region.min.y, region.max.y - 1}; for (auto i = 0; i < 2; ++i) { auto y = ys[i]; auto dst = surface->buffer + (y * surface->stride + region.min.x); auto cmp = surface->compositor->image.data + (y * surface->stride + region.min.x); auto img = image->data + static_cast(y * itransform->e22 + itransform->e23) * image->stride; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++cmp) { auto src = ALPHA_BLEND(img[static_cast(x * itransform->e11 + itransform->e13)], _multiplyAlpha(opacity, blendMethod(*cmp))); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Left, Right Lines SwCoord xs[2] = {region.min.x, region.max.x - 1}; for (auto i = 0; i < 2; ++i) { auto x = xs[i]; auto dst = surface->buffer + ((region.min.y + 1) * surface->stride + x); auto cmp = surface->compositor->image.data + ((region.min.y + 1) * surface->stride + x); auto img = image->data + static_cast(x * itransform->e11 + itransform->e13); for (auto y = region.min.y + 1; y < region.max.y - 1; ++y, dst += surface->stride, cmp += surface->stride) { auto src = ALPHA_BLEND(img[static_cast(y * itransform->e22 + itransform->e23) * image->stride], _multiplyAlpha(opacity, blendMethod(*cmp))); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Center (Down-Scaled) if (image->scale < DOWN_SCALE_TOLERANCE) { auto dbuffer = surface->buffer + ((region.min.y + 1) * surface->stride + (region.min.x + 1)); auto cbuffer = surface->compositor->image.data + ((region.min.y + 1) * surface->stride + (region.min.x + 1)); for (auto y = region.min.y + 1; y < region.max.y - 1; ++y) { auto dst = dbuffer; auto cmp = cbuffer; auto sy = static_cast(y * itransform->e22 + itransform->e23); for (auto x = region.min.x + 1; x < region.max.x - 1; ++x, ++dst, ++cmp) { auto sx = static_cast(x * itransform->e11 + itransform->e13); auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->w, image->h, sx, sy, halfScale), _multiplyAlpha(opacity, blendMethod(*cmp))); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } dbuffer += surface->stride; cbuffer += surface->compositor->image.stride; } //Center (Up-Scaled) } else { auto dbuffer = surface->buffer + (region.min.y * surface->stride + region.min.x); auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride + region.min.x); for (auto y = region.min.y; y < region.max.y - 1; ++y) { auto dst = dbuffer; auto cmp = cbuffer; auto sy = y * itransform->e22 + itransform->e23; for (auto x = region.min.x; x < region.max.x - 1; ++x, ++dst, ++cmp) { auto sx = x * itransform->e11 + itransform->e13; auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), _multiplyAlpha(opacity, blendMethod(*cmp))); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } dbuffer += surface->stride; cbuffer += surface->compositor->image.stride; } } return true; } static bool _rasterScaledTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t opacity, uint32_t halfScale) { //Top, Bottom Lines SwCoord ys[2] = {region.min.y, region.max.y - 1}; for (auto i = 0; i < 2; ++i) { auto y = ys[i]; auto dst = surface->buffer + (y * surface->stride + region.min.x); auto img = image->data + static_cast(y * itransform->e22 + itransform->e23) * image->stride; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto src = ALPHA_BLEND(img[static_cast(x * itransform->e11 + itransform->e13)], opacity); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Left, Right Lines SwCoord xs[2] = {region.min.x, region.max.x - 1}; for (auto i = 0; i < 2; ++i) { auto x = xs[i]; auto dst = surface->buffer + ((region.min.y + 1) * surface->stride + x); auto img = image->data + static_cast(x * itransform->e11 + itransform->e13); for (auto y = region.min.y + 1; y < region.max.y - 1; ++y, dst += surface->stride) { auto src = ALPHA_BLEND(img[static_cast(y * itransform->e22 + itransform->e23) * image->stride], opacity); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Center (Down-Scaled) if (image->scale < DOWN_SCALE_TOLERANCE) { auto dbuffer = surface->buffer + ((region.min.y + 1) * surface->stride + (region.min.x + 1)); for (auto y = region.min.y + 1; y < region.max.y - 1; ++y, dbuffer += surface->stride) { auto sy = static_cast(y * itransform->e22 + itransform->e23); auto dst = dbuffer; for (auto x = region.min.x + 1; x < region.max.x - 1; ++x, ++dst) { auto sx = static_cast(x * itransform->e11 + itransform->e13); auto src = ALPHA_BLEND(_interpDownScaler(image->data, image->w, image->h, sx, sy, halfScale), opacity); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Center (Up-Scaled) } else { auto dbuffer = surface->buffer + (region.min.y * surface->stride + region.min.x); for (auto y = region.min.y; y < region.max.y - 1; ++y, dbuffer += surface->stride) { auto sy = y * itransform->e22 + itransform->e23; auto dst = dbuffer; for (auto x = region.min.x; x < region.max.x - 1; ++x, ++dst) { auto sx = x * itransform->e11 + itransform->e13; auto src = ALPHA_BLEND(_interpUpScaler(image->data, image->w, image->h, sx, sy), opacity); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } } return true; } static bool _rasterScaledRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* itransform, const SwBBox& region, uint32_t halfScale) { //Top, Bottom Lines SwCoord ys[2] = {region.min.y, region.max.y - 1}; for (auto i = 0; i < 2; ++i) { auto y = ys[i]; auto dst = surface->buffer + (y * surface->stride + region.min.x); auto img = image->data + static_cast((y * itransform->e22 + itransform->e23)) * image->stride; for (auto x = region.min.x; x < region.max.x; ++x, ++dst) { auto src = img[static_cast(x * itransform->e11 + itransform->e13)]; *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Left, Right Lines SwCoord xs[2] = {region.min.x, region.max.x - 1}; for (auto i = 0; i < 2; ++i) { auto x = xs[i]; auto dst = surface->buffer + ((region.min.y + 1) * surface->stride + x); auto img = image->data + static_cast(x * itransform->e11 + itransform->e13); for (auto y = region.min.y + 1; y < region.max.y - 1; ++y, dst += surface->stride) { auto src = img[static_cast(y * itransform->e22 + itransform->e23) * image->stride]; *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Center (Down-Scaled) if (image->scale < DOWN_SCALE_TOLERANCE) { auto dbuffer = surface->buffer + ((region.min.y + 1) * surface->stride + (region.min.x + 1)); for (auto y = region.min.y + 1; y < region.max.y - 1; ++y, dbuffer += surface->stride) { auto sy = static_cast(y * itransform->e22 + itransform->e23); auto dst = dbuffer; for (auto x = region.min.x + 1; x < region.max.x - 1; ++x, ++dst) { auto sx = static_cast(x * itransform->e11 + itransform->e13); auto src = _interpDownScaler(image->data, image->w, image->h, sx, sy, halfScale); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } //Center (Up-Scaled) } else { auto dbuffer = surface->buffer + (region.min.y * surface->stride + region.min.x); for (auto y = region.min.y; y < region.max.y - 1; ++y, dbuffer += surface->stride) { auto sy = y * itransform->e22 + itransform->e23; auto dst = dbuffer; for (auto x = region.min.x; x < region.max.x - 1; ++x, ++dst) { auto sx = x * itransform->e11 + itransform->e13; auto src = _interpUpScaler(image->data, image->w, image->h, sx, sy); *dst = src + ALPHA_BLEND(*dst, surface->blender.ialpha(src)); } } } return true; } static bool _scaledRGBAImage(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox& region, uint32_t opacity) { auto halfScale = _halfScale(image->scale); Matrix itransform; if (transform && !mathInverse(transform, &itransform)) return false; if (_translucent(surface, opacity)) { //TODO: Blenders for the following scenarios: [Opacity / Composition / Opacity + Composition] if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterScaledMaskedRGBAImage(surface, image, &itransform, region, opacity, halfScale, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterScaledMaskedRGBAImage(surface, image, &itransform, region, opacity, halfScale, surface->blender.ialpha); } } return _rasterScaledTranslucentRGBAImage(surface, image, &itransform, region, opacity, halfScale); } else { //TODO: Blenders for the following scenarios: [No Composition / Composition] return _rasterScaledRGBAImage(surface, image, &itransform, region, halfScale); } } /************************************************************************/ /* Direct RGBA Image */ /************************************************************************/ static bool _rasterDirectMaskedRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Direct Masked Image"); auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h2 = static_cast(region.max.y - region.min.y); auto w2 = static_cast(region.max.x - region.min.x); auto sbuffer = image->data + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; //compositor buffer for (uint32_t y = 0; y < h2; ++y) { auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w2; ++x, ++dst, ++src, ++cmp) { auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } buffer += surface->stride; cbuffer += surface->compositor->image.stride; sbuffer += image->stride; } return true; } static bool _rasterDirectMaskedTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint32_t opacity, uint32_t (*blendMethod)(uint32_t)) { TVGLOG("SW_ENGINE", "Direct Masked Translucent Image"); auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h2 = static_cast(region.max.y - region.min.y); auto w2 = static_cast(region.max.x - region.min.x); auto sbuffer = image->data + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; //compositor buffer for (uint32_t y = 0; y < h2; ++y) { auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w2; ++x, ++dst, ++src, ++cmp) { auto tmp = ALPHA_BLEND(*src, _multiplyAlpha(opacity, blendMethod(*cmp))); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } buffer += surface->stride; cbuffer += surface->compositor->image.stride; sbuffer += image->stride; } return true; } static bool _rasterDirectTranslucentRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint32_t opacity) { auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto sbuffer = image->data + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto src = sbuffer; for (auto x = region.min.x; x < region.max.x; ++x, ++dst, ++src) { auto tmp = ALPHA_BLEND(*src, opacity); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } dbuffer += surface->stride; sbuffer += image->stride; } return true; } static bool _rasterDirectRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region) { auto dbuffer = &surface->buffer[region.min.y * surface->stride + region.min.x]; auto sbuffer = image->data + (region.min.y + image->oy) * image->stride + (region.min.x + image->ox); for (auto y = region.min.y; y < region.max.y; ++y) { auto dst = dbuffer; auto src = sbuffer; for (auto x = region.min.x; x < region.max.x; x++, dst++, src++) { *dst = *src + ALPHA_BLEND(*dst, surface->blender.ialpha(*src)); } dbuffer += surface->stride; sbuffer += image->stride; } return true; } //Blenders for the following scenarios: [Composition / Non-Composition] * [Opaque / Translucent] static bool _directRGBAImage(SwSurface* surface, const SwImage* image, const SwBBox& region, uint32_t opacity) { if (_compositing(surface)) { if (opacity == 255) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterDirectMaskedRGBAImage(surface, image, region, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterDirectMaskedRGBAImage(surface, image, region, surface->blender.ialpha); } } else { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterDirectMaskedTranslucentRGBAImage(surface, image, region, opacity, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterDirectMaskedTranslucentRGBAImage(surface, image, region, opacity, surface->blender.ialpha); } } } else { if (opacity == 255) return _rasterDirectRGBAImage(surface, image, region); else return _rasterDirectTranslucentRGBAImage(surface, image, region, opacity); } return false; } //Blenders for the following scenarios: [RLE / Whole] * [Direct / Scaled / Transformed] static bool _rasterRGBAImage(SwSurface* surface, SwImage* image, const Matrix* transform, const SwBBox& region, uint32_t opacity) { //RLE Image if (image->rle) { if (image->direct) return _directRleRGBAImage(surface, image, opacity); else if (image->scaled) return _scaledRleRGBAImage(surface, image, transform, region, opacity); //OPTIMIZE_ME: Replace with the TexMap Rasterizer else return _transformedRleRGBAImage(surface, image, transform, opacity); //Whole Image } else { if (image->direct) return _directRGBAImage(surface, image, region, opacity); else if (image->scaled) return _scaledRGBAImage(surface, image, transform, region, opacity); //OPTIMIZE_ME: Replace with the TexMap Rasterizer else return _transformedRGBAImage(surface, image, transform, region, opacity); } } /************************************************************************/ /* Rect Linear Gradient */ /************************************************************************/ static bool _rasterTranslucentLinearGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, uint32_t (*blendMethod)(uint32_t)) { if (fill->linear.len < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; auto sbuffer = static_cast(alloca(w * sizeof(uint32_t))); if (!sbuffer) return false; for (uint32_t y = 0; y < h; ++y) { fillFetchLinear(fill, sbuffer, region.min.y + y, region.min.x, w); auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } buffer += surface->stride; cbuffer += surface->stride; } return true; } static bool __rasterTranslucentLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto sbuffer = static_cast(alloca(w * sizeof(uint32_t))); if (!sbuffer) return false; auto dst = buffer; for (uint32_t y = 0; y < h; ++y) { fillFetchLinear(fill, sbuffer, region.min.y + y, region.min.x, w); for (uint32_t x = 0; x < w; ++x) { dst[x] = sbuffer[x] + ALPHA_BLEND(dst[x], surface->blender.ialpha(sbuffer[x])); } dst += surface->stride; } return true; } static bool _rasterTranslucentLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterTranslucentLinearGradientMaskedRect(surface, region, fill, surface->blender.alpha); } if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterTranslucentLinearGradientMaskedRect(surface, region, fill, surface->blender.ialpha); } } return __rasterTranslucentLinearGradientRect(surface, region, fill); } static bool _rasterSolidLinearGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); for (uint32_t y = 0; y < h; ++y) { fillFetchLinear(fill, buffer + y * surface->stride, region.min.y + y, region.min.x, w); } return true; } /************************************************************************/ /* Rle Linear Gradient */ /************************************************************************/ static bool _rasterTranslucentLinearGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, uint32_t (*blendMethod)(uint32_t)) { if (fill->linear.len < FLT_EPSILON) return false; auto span = rle->spans; auto cbuffer = surface->compositor->image.data; auto buffer = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buffer) return false; for (uint32_t i = 0; i < rle->size; ++i, ++span) { fillFetchLinear(fill, buffer, span->y, span->x, span->len); auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto src = buffer; if (span->coverage == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } else { auto ialpha = 255 - span->coverage; for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } } return true; } static bool __rasterTranslucentLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto span = rle->spans; auto buffer = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buffer) return false; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; fillFetchLinear(fill, buffer, span->y, span->x, span->len); if (span->coverage == 255) { for (uint32_t i = 0; i < span->len; ++i) { dst[i] = buffer[i] + ALPHA_BLEND(dst[i], surface->blender.ialpha(buffer[i])); } } else { for (uint32_t i = 0; i < span->len; ++i) { auto tmp = ALPHA_BLEND(buffer[i], span->coverage); dst[i] = tmp + ALPHA_BLEND(dst[i], surface->blender.ialpha(tmp)); } } } return true; } static bool _rasterTranslucentLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (!rle) return false; if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterTranslucentLinearGradientMaskedRle(surface, rle, fill, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterTranslucentLinearGradientMaskedRle(surface, rle, fill, surface->blender.ialpha); } } return __rasterTranslucentLinearGradientRle(surface, rle, fill); } static bool _rasterSolidLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->linear.len < FLT_EPSILON) return false; auto buf = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buf) return false; auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i, ++span) { if (span->coverage == 255) { fillFetchLinear(fill, surface->buffer + span->y * surface->stride + span->x, span->y, span->x, span->len); } else { fillFetchLinear(fill, buf, span->y, span->x, span->len); auto ialpha = 255 - span->coverage; auto dst = &surface->buffer[span->y * surface->stride + span->x]; for (uint32_t i = 0; i < span->len; ++i) { dst[i] = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(dst[i], ialpha); } } } return true; } /************************************************************************/ /* Rect Radial Gradient */ /************************************************************************/ static bool _rasterTranslucentRadialGradientMaskedRect(SwSurface* surface, const SwBBox& region, const SwFill* fill, uint32_t (*blendMethod)(uint32_t)) { if (fill->radial.a < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto cbuffer = surface->compositor->image.data + (region.min.y * surface->stride) + region.min.x; auto sbuffer = static_cast(alloca(w * sizeof(uint32_t))); if (!sbuffer) return false; for (uint32_t y = 0; y < h; ++y) { fillFetchRadial(fill, sbuffer, region.min.y + y, region.min.x, w); auto dst = buffer; auto cmp = cbuffer; auto src = sbuffer; for (uint32_t x = 0; x < w; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } buffer += surface->stride; cbuffer += surface->stride; } return true; } static bool __rasterTranslucentRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (fill->radial.a < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); auto sbuffer = static_cast(alloca(w * sizeof(uint32_t))); if (!sbuffer) return false; auto dst = buffer; for (uint32_t y = 0; y < h; ++y) { fillFetchRadial(fill, sbuffer, region.min.y + y, region.min.x, w); for (uint32_t x = 0; x < w; ++x) { dst[x] = sbuffer[x] + ALPHA_BLEND(dst[x], surface->blender.ialpha(sbuffer[x])); } dst += surface->stride; } return true; } static bool _rasterTranslucentRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterTranslucentRadialGradientMaskedRect(surface, region, fill, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterTranslucentRadialGradientMaskedRect(surface, region, fill, surface->blender.ialpha); } } return __rasterTranslucentRadialGradientRect(surface, region, fill); } static bool _rasterSolidRadialGradientRect(SwSurface* surface, const SwBBox& region, const SwFill* fill) { if (fill->radial.a < FLT_EPSILON) return false; auto buffer = surface->buffer + (region.min.y * surface->stride) + region.min.x; auto h = static_cast(region.max.y - region.min.y); auto w = static_cast(region.max.x - region.min.x); for (uint32_t y = 0; y < h; ++y) { auto dst = &buffer[y * surface->stride]; fillFetchRadial(fill, dst, region.min.y + y, region.min.x, w); } return true; } /************************************************************************/ /* RLE Radial Gradient */ /************************************************************************/ static bool _rasterTranslucentRadialGradientMaskedRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill, uint32_t (*blendMethod)(uint32_t)) { if (fill->radial.a < FLT_EPSILON) return false; auto span = rle->spans; auto cbuffer = surface->compositor->image.data; auto buffer = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buffer) return false; for (uint32_t i = 0; i < rle->size; ++i, ++span) { fillFetchRadial(fill, buffer, span->y, span->x, span->len); auto dst = &surface->buffer[span->y * surface->stride + span->x]; auto cmp = &cbuffer[span->y * surface->stride + span->x]; auto src = buffer; if (span->coverage == 255) { for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } else { auto ialpha = 255 - span->coverage; for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) { auto tmp = ALPHA_BLEND(*src, blendMethod(*cmp)); tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha); *dst = tmp + ALPHA_BLEND(*dst, surface->blender.ialpha(tmp)); } } } return true; } static bool __rasterTranslucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->radial.a < FLT_EPSILON) return false; auto span = rle->spans; auto buffer = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buffer) return false; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; fillFetchRadial(fill, buffer, span->y, span->x, span->len); if (span->coverage == 255) { for (uint32_t i = 0; i < span->len; ++i) { dst[i] = buffer[i] + ALPHA_BLEND(dst[i], surface->blender.ialpha(buffer[i])); } } else { for (uint32_t i = 0; i < span->len; ++i) { auto tmp = ALPHA_BLEND(buffer[i], span->coverage); dst[i] = tmp + ALPHA_BLEND(dst[i], surface->blender.ialpha(tmp)); } } } return true; } static bool _rasterTranslucentRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (!rle) return false; if (surface->compositor) { if (surface->compositor->method == CompositeMethod::AlphaMask) { return _rasterTranslucentRadialGradientMaskedRle(surface, rle, fill, surface->blender.alpha); } else if (surface->compositor->method == CompositeMethod::InvAlphaMask) { return _rasterTranslucentRadialGradientMaskedRle(surface, rle, fill, surface->blender.ialpha); } } return __rasterTranslucentRadialGradientRle(surface, rle, fill); } static bool _rasterSolidRadialGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill) { if (fill->radial.a < FLT_EPSILON) return false; auto buf = static_cast(alloca(surface->w * sizeof(uint32_t))); if (!buf) return false; auto span = rle->spans; for (uint32_t i = 0; i < rle->size; ++i, ++span) { auto dst = &surface->buffer[span->y * surface->stride + span->x]; if (span->coverage == 255) { fillFetchRadial(fill, dst, span->y, span->x, span->len); } else { fillFetchRadial(fill, buf, span->y, span->x, span->len); auto ialpha = 255 - span->coverage; for (uint32_t i = 0; i < span->len; ++i) { dst[i] = ALPHA_BLEND(buf[i], span->coverage) + ALPHA_BLEND(dst[i], ialpha); } } } return true; } /************************************************************************/ /* External Class Implementation */ /************************************************************************/ void rasterRGBA32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len) { #if defined(THORVG_AVX_VECTOR_SUPPORT) avxRasterRGBA32(dst, val, offset, len); #elif defined(THORVG_NEON_VECTOR_SUPPORT) neonRasterRGBA32(dst, val, offset, len); #else cRasterRGBA32(dst, val, offset, len); #endif } bool rasterCompositor(SwSurface* surface) { if (surface->cs == SwCanvas::ABGR8888 || surface->cs == SwCanvas::ABGR8888_STRAIGHT) { surface->blender.join = _abgrJoin; } else if (surface->cs == SwCanvas::ARGB8888 || surface->cs == SwCanvas::ARGB8888_STRAIGHT) { surface->blender.join = _argbJoin; } else { //What Color Space ??? return false; } surface->blender.alpha = _colorAlpha; surface->blender.ialpha = _colorInvAlpha; return true; } bool rasterGradientShape(SwSurface* surface, SwShape* shape, unsigned id) { if (!shape->fill) return false; auto translucent = shape->fill->translucent || (surface->compositor && surface->compositor->method != CompositeMethod::None); //Fast Track if (shape->fastTrack) { if (id == TVG_CLASS_ID_LINEAR) { if (translucent) return _rasterTranslucentLinearGradientRect(surface, shape->bbox, shape->fill); return _rasterSolidLinearGradientRect(surface, shape->bbox, shape->fill); } else { if (translucent) return _rasterTranslucentRadialGradientRect(surface, shape->bbox, shape->fill); return _rasterSolidRadialGradientRect(surface, shape->bbox, shape->fill); } } else { if (!shape->rle) return false; if (id == TVG_CLASS_ID_LINEAR) { if (translucent) return _rasterTranslucentLinearGradientRle(surface, shape->rle, shape->fill); return _rasterSolidLinearGradientRle(surface, shape->rle, shape->fill); } else { if (translucent) return _rasterTranslucentRadialGradientRle(surface, shape->rle, shape->fill); return _rasterSolidRadialGradientRle(surface, shape->rle, shape->fill); } } return false; } bool rasterShape(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (a < 255) { r = _multiplyAlpha(r, a); g = _multiplyAlpha(g, a); b = _multiplyAlpha(b, a); } auto color = surface->blender.join(r, g, b, a); auto translucent = _translucent(surface, a); //Fast Track if (shape->fastTrack) { if (translucent) return _rasterTranslucentRect(surface, shape->bbox, color); return _rasterSolidRect(surface, shape->bbox, color); } if (translucent) { return _rasterTranslucentRle(surface, shape->rle, color); } return _rasterSolidRle(surface, shape->rle, color); } bool rasterStroke(SwSurface* surface, SwShape* shape, uint8_t r, uint8_t g, uint8_t b, uint8_t a) { if (a < 255) { r = _multiplyAlpha(r, a); g = _multiplyAlpha(g, a); b = _multiplyAlpha(b, a); } auto color = surface->blender.join(r, g, b, a); auto translucent = _translucent(surface, a); if (translucent) return _rasterTranslucentRle(surface, shape->strokeRle, color); return _rasterSolidRle(surface, shape->strokeRle, color); } bool rasterGradientStroke(SwSurface* surface, SwShape* shape, unsigned id) { if (!shape->stroke || !shape->stroke->fill || !shape->strokeRle) return false; auto translucent = shape->stroke->fill->translucent || (surface->compositor && surface->compositor->method != CompositeMethod::None); if (id == TVG_CLASS_ID_LINEAR) { if (translucent) return _rasterTranslucentLinearGradientRle(surface, shape->strokeRle, shape->stroke->fill); return _rasterSolidLinearGradientRle(surface, shape->strokeRle, shape->stroke->fill); } else { if (translucent) return _rasterTranslucentRadialGradientRle(surface, shape->strokeRle, shape->stroke->fill); return _rasterSolidRadialGradientRle(surface, shape->strokeRle, shape->stroke->fill); } return false; } bool rasterClear(SwSurface* surface) { if (!surface || !surface->buffer || surface->stride <= 0 || surface->w <= 0 || surface->h <= 0) return false; if (surface->w == surface->stride) { rasterRGBA32(surface->buffer, 0x00000000, 0, surface->w * surface->h); } else { for (uint32_t i = 0; i < surface->h; i++) { rasterRGBA32(surface->buffer + surface->stride * i, 0x00000000, 0, surface->w); } } return true; } void rasterUnpremultiply(SwSurface* surface) { //TODO: Create simd avx and neon version for (uint32_t y = 0; y < surface->h; y++) { auto buffer = surface->buffer + surface->stride * y; for (uint32_t x = 0; x < surface->w; ++x) { uint8_t a = buffer[x] >> 24; if (a == 255) { continue; } else if (a == 0) { buffer[x] = 0x00ffffff; } else { uint16_t r = ((buffer[x] >> 8) & 0xff00) / a; uint16_t g = ((buffer[x]) & 0xff00) / a; uint16_t b = ((buffer[x] << 8) & 0xff00) / a; if (r > 0xff) r = 0xff; if (g > 0xff) g = 0xff; if (b > 0xff) b = 0xff; buffer[x] = (a << 24) | (r << 16) | (g << 8) | (b); } } } } bool rasterImage(SwSurface* surface, SwImage* image, const Matrix* transform, const SwBBox& bbox, uint32_t opacity) { //Verify Boundary if (bbox.max.x < 0 || bbox.max.y < 0 || bbox.min.x >= surface->w || bbox.min.y >= surface->h) return false; //TOOD: switch (image->format) //TODO: case: _rasterRGBImage() //TODO: case: _rasterGrayscaleImage() //TODO: case: _rasterAlphaImage() return _rasterRGBAImage(surface, image, transform, bbox, opacity); }