mirror of
https://github.com/thorvg/thorvg.git
synced 2025-06-14 12:04:29 +00:00

remove unnecessary condition. implementation won't be included multiple times not like headers. Thus this condition is unnecessary. Change-Id: Id37e675c40ce7213a06c950da8e5ca17ff7245c9
314 lines
No EOL
9.7 KiB
C++
314 lines
No EOL
9.7 KiB
C++
/*
|
|
* Copyright (c) 2020 Samsung Electronics Co., Ltd. All rights reserved.
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "tvgSwCommon.h"
|
|
|
|
|
|
/************************************************************************/
|
|
/* Internal Class Implementation */
|
|
/************************************************************************/
|
|
|
|
#define GRADIENT_STOP_SIZE 1024
|
|
#define FIXPT_BITS 8
|
|
#define FIXPT_SIZE (1<<FIXPT_BITS)
|
|
|
|
|
|
static bool _updateColorTable(SwFill* fill, const Fill* fdata, SwSurface* surface)
|
|
{
|
|
if (!fill->ctable) {
|
|
fill->ctable = static_cast<uint32_t*>(malloc(GRADIENT_STOP_SIZE * sizeof(uint32_t)));
|
|
if (!fill->ctable) return false;
|
|
}
|
|
|
|
const Fill::ColorStop* colors;
|
|
auto cnt = fdata->colorStops(&colors);
|
|
if (cnt == 0 || !colors) return false;
|
|
|
|
auto pColors = colors;
|
|
|
|
if (pColors->a < 255) fill->translucent = true;
|
|
|
|
auto r = ALPHA_MULTIPLY(pColors->r, pColors->a);
|
|
auto g = ALPHA_MULTIPLY(pColors->g, pColors->a);
|
|
auto b = ALPHA_MULTIPLY(pColors->b, pColors->a);
|
|
|
|
auto rgba = surface->comp.join(r, g, b, pColors->a);
|
|
auto inc = 1.0f / static_cast<float>(GRADIENT_STOP_SIZE);
|
|
auto pos = 1.5f * inc;
|
|
uint32_t i = 0;
|
|
|
|
fill->ctable[i++] = rgba;
|
|
|
|
while (pos <= pColors->offset) {
|
|
fill->ctable[i] = fill->ctable[i - 1];
|
|
++i;
|
|
pos += inc;
|
|
}
|
|
|
|
for (uint32_t j = 0; j < cnt - 1; ++j) {
|
|
auto curr = colors + j;
|
|
auto next = curr + 1;
|
|
auto delta = 1.0f / (next->offset - curr->offset);
|
|
if (next->a < 255) fill->translucent = true;
|
|
|
|
auto r = ALPHA_MULTIPLY(next->r, next->a);
|
|
auto g = ALPHA_MULTIPLY(next->g, next->a);
|
|
auto b = ALPHA_MULTIPLY(next->b, next->a);
|
|
|
|
auto rgba2 = surface->comp.join(r, g, b, next->a);
|
|
|
|
while (pos < next->offset && i < GRADIENT_STOP_SIZE) {
|
|
auto t = (pos - curr->offset) * delta;
|
|
auto dist = static_cast<int32_t>(256 * t);
|
|
auto dist2 = 256 - dist;
|
|
fill->ctable[i] = COLOR_INTERPOLATE(rgba, dist2, rgba2, dist);
|
|
++i;
|
|
pos += inc;
|
|
}
|
|
rgba = rgba2;
|
|
}
|
|
|
|
for (; i < GRADIENT_STOP_SIZE; ++i)
|
|
fill->ctable[i] = rgba;
|
|
|
|
//Make sure the lat color stop is represented at the end of the table
|
|
fill->ctable[GRADIENT_STOP_SIZE - 1] = rgba;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool _prepareLinear(SwFill* fill, const LinearGradient* linear, const Matrix* transform)
|
|
{
|
|
float x1, x2, y1, y2;
|
|
if (linear->linear(&x1, &y1, &x2, &y2) != Result::Success) return false;
|
|
|
|
if (transform) {
|
|
auto sx = sqrt(pow(transform->e11, 2) + pow(transform->e21, 2));
|
|
auto sy = sqrt(pow(transform->e12, 2) + pow(transform->e22, 2));
|
|
auto cx = (x2 - x1) * 0.5f + x1;
|
|
auto cy = (y2 - y1) * 0.5f + y1;
|
|
auto dx = x1 - cx;
|
|
auto dy = y1 - cy;
|
|
x1 = dx * transform->e11 + dy * transform->e12 + transform->e13 + (cx * sx);
|
|
y1 = dx * transform->e21 + dy * transform->e22 + transform->e23 + (cy * sy);
|
|
dx = x2 - cx;
|
|
dy = y2 - cy;
|
|
x2 = dx * transform->e11 + dy * transform->e12 + transform->e13 + (cx * sx);
|
|
y2 = dx * transform->e21 + dy * transform->e22 + transform->e23 + (cy * sy);
|
|
}
|
|
|
|
fill->linear.dx = x2 - x1;
|
|
fill->linear.dy = y2 - y1;
|
|
fill->linear.len = fill->linear.dx * fill->linear.dx + fill->linear.dy * fill->linear.dy;
|
|
|
|
if (fill->linear.len < FLT_EPSILON) return true;
|
|
|
|
fill->linear.dx /= fill->linear.len;
|
|
fill->linear.dy /= fill->linear.len;
|
|
fill->linear.offset = -fill->linear.dx * x1 -fill->linear.dy * y1;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool _prepareRadial(SwFill* fill, const RadialGradient* radial, const Matrix* transform)
|
|
{
|
|
float radius;
|
|
if (radial->radial(&fill->radial.cx, &fill->radial.cy, &radius) != Result::Success) return false;
|
|
if (radius < FLT_EPSILON) return true;
|
|
|
|
fill->sx = 1.0f;
|
|
fill->sy = 1.0f;
|
|
|
|
if (transform) {
|
|
auto tx = fill->radial.cx * transform->e11 + fill->radial.cy * transform->e12 + transform->e13;
|
|
auto ty = fill->radial.cx * transform->e21 + fill->radial.cy * transform->e22 + transform->e23;
|
|
fill->radial.cx = tx;
|
|
fill->radial.cy = ty;
|
|
|
|
auto sx = sqrt(pow(transform->e11, 2) + pow(transform->e21, 2));
|
|
auto sy = sqrt(pow(transform->e12, 2) + pow(transform->e22, 2));
|
|
|
|
//FIXME; Scale + Rotation is not working properly
|
|
radius *= sx;
|
|
|
|
if (fabsf(sx - sy) > FLT_EPSILON) {
|
|
fill->sx = sx;
|
|
fill->sy = sy;
|
|
}
|
|
}
|
|
|
|
fill->radial.a = radius * radius;
|
|
fill->radial.inv2a = pow(1 / (2 * fill->radial.a), 2);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static inline uint32_t _clamp(const SwFill* fill, int32_t pos)
|
|
{
|
|
switch (fill->spread) {
|
|
case FillSpread::Pad: {
|
|
if (pos >= GRADIENT_STOP_SIZE) pos = GRADIENT_STOP_SIZE - 1;
|
|
else if (pos < 0) pos = 0;
|
|
break;
|
|
}
|
|
case FillSpread::Repeat: {
|
|
if (pos < 0) pos = GRADIENT_STOP_SIZE + pos;
|
|
pos = pos % GRADIENT_STOP_SIZE;
|
|
break;
|
|
}
|
|
case FillSpread::Reflect: {
|
|
auto limit = GRADIENT_STOP_SIZE * 2;
|
|
pos = pos % limit;
|
|
if (pos < 0) pos = limit + pos;
|
|
if (pos >= GRADIENT_STOP_SIZE) pos = (limit - pos - 1);
|
|
break;
|
|
}
|
|
}
|
|
return pos;
|
|
}
|
|
|
|
|
|
static inline uint32_t _fixedPixel(const SwFill* fill, int32_t pos)
|
|
{
|
|
int32_t i = (pos + (FIXPT_SIZE / 2)) >> FIXPT_BITS;
|
|
return fill->ctable[_clamp(fill, i)];
|
|
}
|
|
|
|
|
|
static inline uint32_t _pixel(const SwFill* fill, float pos)
|
|
{
|
|
auto i = static_cast<int32_t>(pos * (GRADIENT_STOP_SIZE - 1) + 0.5f);
|
|
return fill->ctable[_clamp(fill, i)];
|
|
}
|
|
|
|
|
|
/************************************************************************/
|
|
/* External Class Implementation */
|
|
/************************************************************************/
|
|
|
|
void fillFetchRadial(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len)
|
|
{
|
|
if (fill->radial.a < FLT_EPSILON) return;
|
|
|
|
//Rotation
|
|
auto rx = (x + 0.5f - fill->radial.cx) * fill->sy;
|
|
auto ry = (y + 0.5f - fill->radial.cy) * fill->sx;
|
|
auto inv2a = fill->radial.inv2a;
|
|
auto rxy = rx * rx + ry * ry;
|
|
auto rxryPlus = 2 * rx;
|
|
auto det = (-4 * fill->radial.a * -rxy) * inv2a;
|
|
auto detDelta = (4 * fill->radial.a * (rxryPlus + 1.0f)) * inv2a;
|
|
auto detDelta2 = (4 * fill->radial.a * 2.0f) * inv2a;
|
|
|
|
for (uint32_t i = 0 ; i < len ; ++i) {
|
|
*dst = _pixel(fill, sqrt(det));
|
|
++dst;
|
|
det += detDelta;
|
|
detDelta += detDelta2;
|
|
}
|
|
}
|
|
|
|
|
|
void fillFetchLinear(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t offset, uint32_t len)
|
|
{
|
|
if (fill->linear.len < FLT_EPSILON) return;
|
|
|
|
//Rotation
|
|
float rx = x + 0.5f;
|
|
float ry = y + 0.5f;
|
|
float t = (fill->linear.dx * rx + fill->linear.dy * ry + fill->linear.offset) * (GRADIENT_STOP_SIZE - 1);
|
|
float inc = (fill->linear.dx) * (GRADIENT_STOP_SIZE - 1);
|
|
|
|
if (fabsf(inc) < FLT_EPSILON) {
|
|
auto color = _fixedPixel(fill, static_cast<int32_t>(t * FIXPT_SIZE));
|
|
rasterRGBA32(dst, color, offset, len);
|
|
return;
|
|
}
|
|
|
|
dst += offset;
|
|
|
|
auto vMax = static_cast<float>(INT32_MAX >> (FIXPT_BITS + 1));
|
|
auto vMin = -vMax;
|
|
auto v = t + (inc * len);
|
|
|
|
//we can use fixed point math
|
|
if (v < vMax && v > vMin) {
|
|
auto t2 = static_cast<uint32_t>(t * FIXPT_SIZE);
|
|
auto inc2 = static_cast<uint32_t>(inc * FIXPT_SIZE);
|
|
for (uint32_t j = 0; j < len; ++j) {
|
|
*dst = _fixedPixel(fill, t2);
|
|
++dst;
|
|
t2 += inc2;
|
|
}
|
|
//we have to fallback to float math
|
|
} else {
|
|
while (dst < dst + len) {
|
|
*dst = _pixel(fill, t / GRADIENT_STOP_SIZE);
|
|
++dst;
|
|
t += inc;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool fillGenColorTable(SwFill* fill, const Fill* fdata, const Matrix* transform, SwSurface* surface, bool ctable)
|
|
{
|
|
if (!fill) return false;
|
|
|
|
fill->spread = fdata->spread();
|
|
|
|
if (ctable) {
|
|
if (!_updateColorTable(fill, fdata, surface)) return false;
|
|
}
|
|
|
|
if (fdata->id() == FILL_ID_LINEAR) {
|
|
return _prepareLinear(fill, static_cast<const LinearGradient*>(fdata), transform);
|
|
} else if (fdata->id() == FILL_ID_RADIAL) {
|
|
return _prepareRadial(fill, static_cast<const RadialGradient*>(fdata), transform);
|
|
}
|
|
|
|
//LOG: What type of gradient?!
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void fillReset(SwFill* fill)
|
|
{
|
|
if (fill->ctable) {
|
|
free(fill->ctable);
|
|
fill->ctable = nullptr;
|
|
}
|
|
fill->translucent = false;
|
|
}
|
|
|
|
|
|
void fillFree(SwFill* fill)
|
|
{
|
|
if (!fill) return;
|
|
|
|
if (fill->ctable) free(fill->ctable);
|
|
|
|
free(fill);
|
|
} |