thorvg/src/savers/gif/tvgGifEncoder.cpp
Hermet Park 092da69003 saver/gif: memory usage optimization.
Use a cache to store the intermediate palette data.
2023-11-17 13:28:41 +09:00

640 lines
21 KiB
C++

/*
* Copyright (c) 2023 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
//
// gif.h
// by Charlie Tangora
// Public domain.
// Email me : ctangora -at- gmail -dot- com
//
// This file offers a simple, very limited way to create animated GIFs directly in code.
//
// Those looking for particular cleverness are likely to be disappointed; it's pretty
// much a straight-ahead implementation of the GIF format with optional Floyd-Steinberg
// dithering. (It does at least use delta encoding - only the changed portions of each
// frame are saved.)
//
// So resulting files are often quite large. The hope is that it will be handy nonetheless
// as a quick and easily-integrated way for programs to spit out animations.
//
// Only RGBA8 is currently supported as an input format. (The alpha is ignored.)
//
// USAGE:
// Create a GifWriter struct. Pass it to GifBegin() to initialize and write the header.
// Pass subsequent frames to GifWriteFrame().
// Finally, call GifEnd() to close the file handle and free memory.
//
#include <memory.h>
#include "tvgMath.h"
#include "tvgGifEncoder.h"
#define TRANSPARENT_IDX 0
typedef struct
{
int bitDepth;
uint8_t r[256];
uint8_t g[256];
uint8_t b[256];
// k-d tree over RGB space, organized in heap fashion
// i.e. left child of node i is node i*2, right child is node i*2+1
// nodes 256-511 are implicitly the leaves, containing a color
uint8_t treeSplitElt[256];
uint8_t treeSplit[256];
} GifPalette;
// Simple structure to write out the LZW-compressed portion of the image
// one bit at a time
typedef struct
{
uint8_t bitIndex; // how many bits in the partial byte written so far
uint8_t byte; // current partial byte
uint32_t chunkIndex;
uint8_t chunk[256]; // bytes are written in here until we have 256 of them, then written to the file
} GifBitStatus;
// The LZW dictionary is a 256-ary tree constructed as the file is encoded,
// this is one node
typedef struct
{
uint16_t m_next[256];
} GifLzwNode;
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
// walks the k-d tree to pick the palette entry for a desired color.
// Takes as in/out parameters the current best color and its error -
// only changes them if it finds a better color in its subtree.
// this is the major hotspot in the code at the moment.
static void _getClosestPaletteColor( GifPalette* pPal, int r, int g, int b, int* bestInd, int* bestDiff, int treeRoot )
{
// base case, reached the bottom of the tree
if(treeRoot > (1<<pPal->bitDepth)-1) {
int ind = treeRoot-(1<<pPal->bitDepth);
if(ind == TRANSPARENT_IDX) return;
// check whether this color is better than the current winner
int r_err = r - ((int32_t)pPal->r[ind]);
int g_err = g - ((int32_t)pPal->g[ind]);
int b_err = b - ((int32_t)pPal->b[ind]);
int diff = abs(r_err)+ abs(g_err) + abs(b_err);
if(diff < *bestDiff) {
*bestInd = ind;
*bestDiff = diff;
}
return;
}
// take the appropriate color (r, g, or b) for this node of the k-d tree
int comps[3]; comps[0] = r; comps[1] = g; comps[2] = b;
int splitComp = comps[pPal->treeSplitElt[treeRoot]];
int splitPos = pPal->treeSplit[treeRoot];
if (splitPos > splitComp) {
// check the left subtree
_getClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2);
if (*bestDiff > splitPos - splitComp) {
// cannot prove there's not a better value in the right subtree, check that too
_getClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1);
}
} else {
_getClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2+1);
if (*bestDiff > splitComp - splitPos) {
_getClosestPaletteColor(pPal, r, g, b, bestInd, bestDiff, treeRoot*2);
}
}
}
static void _swapPixels(uint8_t* image, int pixA, int pixB)
{
uint8_t rA = image[pixA*4];
uint8_t gA = image[pixA*4+1];
uint8_t bA = image[pixA*4+2];
uint8_t aA = image[pixA*4+3];
uint8_t rB = image[pixB*4];
uint8_t gB = image[pixB*4+1];
uint8_t bB = image[pixB*4+2];
uint8_t aB = image[pixA*4+3];
image[pixA*4] = rB;
image[pixA*4+1] = gB;
image[pixA*4+2] = bB;
image[pixA*4+3] = aB;
image[pixB*4] = rA;
image[pixB*4+1] = gA;
image[pixB*4+2] = bA;
image[pixB*4+3] = aA;
}
// just the partition operation from quicksort
static int _partition(uint8_t* image, const int left, const int right, const int elt, int pivotIndex)
{
const int pivotValue = image[(pivotIndex)*4+elt];
_swapPixels(image, pivotIndex, right-1);
int storeIndex = left;
bool split = 0;
for (int ii = left; ii < right - 1; ++ii) {
int arrayVal = image[ii*4+elt];
if(arrayVal < pivotValue) {
_swapPixels(image, ii, storeIndex);
++storeIndex;
} else if(arrayVal == pivotValue) {
if (split) {
_swapPixels(image, ii, storeIndex);
++storeIndex;
}
split = !split;
}
}
_swapPixels(image, storeIndex, right-1);
return storeIndex;
}
// Perform an incomplete sort, finding all elements above and below the desired median
static void _partitionByMedian(uint8_t* image, int left, int right, int com, int neededCenter)
{
if (left < right-1) {
int pivotIndex = left + (right-left)/2;
pivotIndex = _partition(image, left, right, com, pivotIndex);
// Only "sort" the section of the array that contains the median
if(pivotIndex > neededCenter) _partitionByMedian(image, left, pivotIndex, com, neededCenter);
if(pivotIndex < neededCenter) _partitionByMedian(image, pivotIndex+1, right, com, neededCenter);
}
}
// Builds a palette by creating a balanced k-d tree of all pixels in the image
static void _splitPalette(uint8_t* image, int numPixels, int firstElt, int lastElt, int splitElt, int splitDist, int treeNode, GifPalette* pal)
{
if(lastElt <= firstElt || numPixels == 0) return;
// base case, bottom of the tree
if (lastElt == firstElt + 1) {
// otherwise, take the average of all colors in this subcube
uint64_t r=0, g=0, b=0;
for(int ii=0; ii<numPixels; ++ii) {
r += image[ii*4+0];
g += image[ii*4+1];
b += image[ii*4+2];
}
r += (uint64_t)numPixels / 2; // round to nearest
g += (uint64_t)numPixels / 2;
b += (uint64_t)numPixels / 2;
r /= (uint64_t)numPixels;
g /= (uint64_t)numPixels;
b /= (uint64_t)numPixels;
pal->r[firstElt] = (uint8_t)r;
pal->g[firstElt] = (uint8_t)g;
pal->b[firstElt] = (uint8_t)b;
return;
}
// Find the axis with the largest range
int minR = 255, maxR = 0;
int minG = 255, maxG = 0;
int minB = 255, maxB = 0;
for (int ii=0; ii<numPixels; ++ii) {
int r = image[ii*4+0];
int g = image[ii*4+1];
int b = image[ii*4+2];
if(r > maxR) maxR = r;
if(r < minR) minR = r;
if(g > maxG) maxG = g;
if(g < minG) minG = g;
if(b > maxB) maxB = b;
if(b < minB) minB = b;
}
int rRange = maxR - minR;
int gRange = maxG - minG;
int bRange = maxB - minB;
// and split along that axis. (incidentally, this means this isn't a "proper" k-d tree but I don't know what else to call it)
int splitCom = 1;
if (bRange > gRange) splitCom = 2;
if (rRange > bRange && rRange > gRange) splitCom = 0;
int subPixelsA = numPixels * (splitElt - firstElt) / (lastElt - firstElt);
int subPixelsB = numPixels-subPixelsA;
_partitionByMedian(image, 0, numPixels, splitCom, subPixelsA);
pal->treeSplitElt[treeNode] = (uint8_t)splitCom;
pal->treeSplit[treeNode] = image[subPixelsA*4+splitCom];
_splitPalette(image, subPixelsA, firstElt, splitElt, splitElt-splitDist, splitDist/2, treeNode*2, pal);
_splitPalette(image+subPixelsA*4, subPixelsB, splitElt, lastElt, splitElt+splitDist, splitDist/2, treeNode*2+1, pal);
}
// Finds all pixels that have changed from the previous image and
// moves them to the from of the buffer.
// This allows us to build a palette optimized for the colors of the
// changed pixels only.
static int _pickChangedPixels(const uint8_t* lastFrame, uint8_t* frame, int numPixels, bool transparent)
{
int numChanged = 0;
uint8_t* writeIter = frame;
for (int ii=0; ii < numPixels; ++ii) {
if (frame[3] == 255) {
if (transparent || (lastFrame[0] != frame[0] || lastFrame[1] != frame[1] || lastFrame[2] != frame[2])) {
writeIter[0] = frame[0];
writeIter[1] = frame[1];
writeIter[2] = frame[2];
++numChanged;
writeIter += 4;
}
}
lastFrame += 4;
frame += 4;
}
return numChanged;
}
// Creates a palette by placing all the image pixels in a k-d tree and then averaging the blocks at the bottom.
// This is known as the "modified median split" technique
static void _makePalette(GifWriter* writer, const uint8_t* lastFrame, const uint8_t* nextFrame, uint32_t width, uint32_t height, int bitDepth, GifPalette* pPal, bool transparent)
{
pPal->bitDepth = bitDepth;
size_t imageSize = (size_t)(width * height * 4 * sizeof(uint8_t));
memcpy(writer->tmpImage, nextFrame, imageSize);
int numPixels = (int)(width * height);
if (lastFrame) numPixels = _pickChangedPixels(lastFrame, writer->tmpImage, numPixels, transparent);
const int lastElt = 1 << bitDepth;
const int splitElt = lastElt/2;
const int splitDist = splitElt/2;
_splitPalette(writer->tmpImage, numPixels, 1, lastElt, splitElt, splitDist, 1, pPal);
// add the bottom node for the transparency index
pPal->treeSplit[1 << (bitDepth-1)] = 0;
pPal->treeSplitElt[1 << (bitDepth-1)] = 0;
pPal->r[0] = pPal->g[0] = pPal->b[0] = 0;
}
void _palettizePixel(const uint8_t* nextFrame, uint8_t* outFrame, GifPalette* pPal)
{
int32_t bestDiff = 1000000;
int32_t bestInd = 1;
_getClosestPaletteColor(pPal, nextFrame[0], nextFrame[1], nextFrame[2], &bestInd, &bestDiff, 1);
// Write the resulting color to the output buffer
outFrame[0] = pPal->r[bestInd];
outFrame[1] = pPal->g[bestInd];
outFrame[2] = pPal->b[bestInd];
outFrame[3] = (uint8_t)bestInd;
}
// Picks palette colors for the image using simple thresholding, no dithering
static void _thresholdImage(const uint8_t* lastFrame, const uint8_t* nextFrame, uint8_t* outFrame, uint32_t width, uint32_t height, GifPalette* pPal, bool transparent)
{
uint32_t numPixels = width*height;
if (transparent) {
for (uint32_t ii = 0; ii < numPixels; ++ii) {
if (nextFrame[3] < 255) {
outFrame[0] = 0;
outFrame[1] = 0;
outFrame[2] = 0;
outFrame[3] = TRANSPARENT_IDX;
} else {
_palettizePixel(nextFrame, outFrame, pPal);
}
if (lastFrame) lastFrame += 4;
outFrame += 4;
nextFrame += 4;
}
} else {
for (uint32_t ii = 0; ii < numPixels; ++ii) {
// if a previous color is available, and it matches the current color,
// set the pixel to transparent
if(lastFrame && lastFrame[0] == nextFrame[0] && lastFrame[1] == nextFrame[1] && lastFrame[2] == nextFrame[2]) {
outFrame[0] = lastFrame[0];
outFrame[1] = lastFrame[1];
outFrame[2] = lastFrame[2];
outFrame[3] = TRANSPARENT_IDX;
} else {
_palettizePixel(nextFrame, outFrame, pPal);
}
if (lastFrame) lastFrame += 4;
outFrame += 4;
nextFrame += 4;
}
}
}
// insert a single bit
static void _writeBit(GifBitStatus* stat, uint32_t bit)
{
bit = bit & 1;
bit = bit << stat->bitIndex;
stat->byte |= bit;
++stat->bitIndex;
if (stat->bitIndex > 7) {
// move the newly-finished byte to the chunk buffer
stat->chunk[stat->chunkIndex++] = stat->byte;
// and start a new byte
stat->bitIndex = 0;
stat->byte = 0;
}
}
// write all bytes so far to the file
static void _writeChunk(FILE* f, GifBitStatus* stat)
{
fputc((int)stat->chunkIndex, f);
fwrite(stat->chunk, 1, stat->chunkIndex, f);
stat->bitIndex = 0;
stat->byte = 0;
stat->chunkIndex = 0;
}
static void _writeCode(FILE* f, GifBitStatus* stat, uint32_t code, uint32_t length)
{
for (uint32_t ii = 0; ii < length; ++ii) {
_writeBit(stat, code);
code = code >> 1;
if (stat->chunkIndex == 255) _writeChunk(f, stat);
}
}
// write a 256-color (8-bit) image palette to the file
static void _writePalette(const GifPalette* pPal, FILE* f)
{
fputc(0, f); // first color: transparency
fputc(0, f);
fputc(0, f);
for (int ii = 1; ii < (1 << pPal->bitDepth); ++ii) {
uint32_t r = pPal->r[ii];
uint32_t g = pPal->g[ii];
uint32_t b = pPal->b[ii];
fputc((int)r, f);
fputc((int)g, f);
fputc((int)b, f);
}
}
// write the image header, LZW-compress and write out the image
static void _writeLzwImage(FILE* f, uint8_t* image, uint32_t left, uint32_t top, uint32_t width, uint32_t height, uint32_t delay, GifPalette* pPal, bool transparent)
{
// graphics control extension
fputc(0x21, f);
fputc(0xf9, f);
fputc(0x04, f);
fputc((transparent ? 0x09 : 0x05), f); //clear prev frame or not.
fputc(delay & 0xff, f);
fputc((delay >> 8) & 0xff, f);
fputc(TRANSPARENT_IDX, f); // transparent color index
fputc(0, f);
fputc(0x2c, f); // image descriptor block
fputc(left & 0xff, f); // corner of image in canvas space
fputc((left >> 8) & 0xff, f);
fputc(top & 0xff, f);
fputc((top >> 8) & 0xff, f);
fputc(width & 0xff, f); // width and height of image
fputc((width >> 8) & 0xff, f);
fputc(height & 0xff, f);
fputc((height >> 8) & 0xff, f);
//fputc(0, f); // no local color table, no transparency
//fputc(0x80, f); // no local color table, but transparency
fputc(0x80 + pPal->bitDepth-1, f); // local color table present, 2 ^ bitDepth entries
_writePalette(pPal, f);
const int minCodeSize = pPal->bitDepth;
const uint32_t clearCode = 1 << pPal->bitDepth;
fputc(minCodeSize, f); // min code size 8 bits
GifLzwNode* codetree = (GifLzwNode*)malloc(sizeof(GifLzwNode)*4096);
memset(codetree, 0, sizeof(GifLzwNode)*4096);
int32_t curCode = -1;
uint32_t codeSize = (uint32_t)minCodeSize + 1;
uint32_t maxCode = clearCode+1;
GifBitStatus stat;
stat.byte = 0;
stat.bitIndex = 0;
stat.chunkIndex = 0;
_writeCode(f, &stat, clearCode, codeSize); // start with a fresh LZW dictionary
for (uint32_t yy = 0; yy < height; ++yy) {
for (uint32_t xx=0; xx<width; ++xx) {
// top-left origin
uint8_t nextValue = image[(yy*width+xx)*4+3];
// "loser mode" - no compression, every single code is followed immediately by a clear
//WriteCode( f, stat, nextValue, codeSize );
//WriteCode( f, stat, 256, codeSize );
if (curCode < 0) {
// first value in a new run
curCode = nextValue;
} else if (codetree[curCode].m_next[nextValue]) {
// current run already in the dictionary
curCode = codetree[curCode].m_next[nextValue];
} else {
// finish the current run, write a code
_writeCode(f, &stat, (uint32_t)curCode, codeSize);
// insert the new run into the dictionary
codetree[curCode].m_next[nextValue] = (uint16_t)++maxCode;
if (maxCode >= (1ul << codeSize)) {
// dictionary entry count has broken a size barrier,
// we need more bits for codes
codeSize++;
}
if (maxCode == 4095) {
// the dictionary is full, clear it out and begin anew
_writeCode(f, &stat, clearCode, codeSize); // clear tree
memset(codetree, 0, sizeof(GifLzwNode)*4096);
codeSize = (uint32_t)(minCodeSize + 1);
maxCode = clearCode+1;
}
curCode = nextValue;
}
}
}
// compression footer
_writeCode(f, &stat, (uint32_t)curCode, codeSize);
_writeCode(f, &stat, clearCode, codeSize);
_writeCode(f, &stat, clearCode + 1, (uint32_t)minCodeSize + 1);
// write out the last partial chunk
while (stat.bitIndex) _writeBit(&stat, 0);
if (stat.chunkIndex) _writeChunk(f, &stat);
fputc(0, f); // image block terminator
free(codetree);
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
bool gifBegin(GifWriter* writer, const char* filename, uint32_t width, uint32_t height, uint32_t delay)
{
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
writer->f = 0;
fopen_s(&writer->f, filename, "wb");
#else
writer->f = fopen(filename, "wb");
#endif
if (!writer->f) return false;
writer->firstFrame = true;
// allocate
writer->oldImage = (uint8_t*)malloc(width*height*4);
writer->tmpImage = (uint8_t*)malloc(width*height*4);
fputs("GIF89a", writer->f);
// screen descriptor
fputc(width & 0xff, writer->f);
fputc((width >> 8) & 0xff, writer->f);
fputc(height & 0xff, writer->f);
fputc((height >> 8) & 0xff, writer->f);
fputc(0xf0, writer->f); // there is an unsorted global color table of 2 entries
fputc(0, writer->f); // background color
fputc(0, writer->f); // pixels are square (we need to specify this because it's 1989)
// now the "global" palette (really just a dummy palette)
// color 0: black
fputc(0, writer->f);
fputc(0, writer->f);
fputc(0, writer->f);
// color 1: also black
fputc(0, writer->f);
fputc(0, writer->f);
fputc(0, writer->f);
if(delay != 0) {
// animation header
fputc(0x21, writer->f); // extension
fputc(0xff, writer->f); // application specific
fputc(11, writer->f); // length 11
fputs("NETSCAPE2.0", writer->f); // yes, really
fputc(3, writer->f); // 3 bytes of NETSCAPE2.0 data
fputc(1, writer->f); // JUST BECAUSE
fputc(0, writer->f); // loop infinitely (byte 0)
fputc(0, writer->f); // loop infinitely (byte 1)
fputc(0, writer->f); // block terminator
}
return true;
}
bool gifWriteFrame(GifWriter* writer, const uint8_t* image, uint32_t width, uint32_t height, uint32_t delay, bool transparent)
{
if (!writer->f) return false;
const uint8_t* oldImage = writer->firstFrame? NULL : writer->oldImage;
writer->firstFrame = false;
GifPalette pal;
_makePalette(writer, oldImage, image, width, height, 8, &pal, transparent);
_thresholdImage(oldImage, image, writer->oldImage, width, height, &pal, transparent);
_writeLzwImage(writer->f, writer->oldImage, 0, 0, width, height, delay, &pal, transparent);
return true;
}
bool gifEnd(GifWriter* writer)
{
if (!writer->f) return false;
fputc(0x3b, writer->f); // end of file
fclose(writer->f);
free(writer->oldImage);
free(writer->tmpImage);
writer->f = NULL;
writer->oldImage = NULL;
return true;
}