thorvg/src/renderer/gl_engine/tvgGlRenderer.cpp
Hermet Park 0a16152d75 api: renamed the composite with mask.
Since we've separated ClipPath and Masking,
Masking now has a distinct and independent purpose.

API Modification:
 - enum class CompositeMethod -> enum class MaskMethod
 - Result Paint::composite(std::unique_ptr<Paint> target, CompositeMethod method) -> Result Paint::mask(std::unique_ptr<Paint> target, MaskMethod method)
 - CompositeMethod Paint::mask(const Paint** target) const -> MaskMethod Paint::mask(const Paint** target) const

issue: https://github.com/thorvg/thorvg/issues/1372
2024-10-16 14:41:26 +09:00

1409 lines
No EOL
43 KiB
C++

/*
* Copyright (c) 2020 - 2024 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tvgMath.h"
#include "tvgGlRenderer.h"
#include "tvgGlGpuBuffer.h"
#include "tvgGlGeometry.h"
#include "tvgGlRenderTask.h"
#include "tvgGlProgram.h"
#include "tvgGlShaderSrc.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
#define NOISE_LEVEL 0.5f
static int32_t initEngineCnt = false;
static int32_t rendererCnt = 0;
static void _termEngine()
{
if (rendererCnt > 0) return;
//TODO: Clean up global resources
}
void GlRenderer::clearDisposes()
{
if (mDisposed.textures.count > 0) {
glDeleteTextures(mDisposed.textures.count, mDisposed.textures.data);
mDisposed.textures.clear();
}
}
GlRenderer::GlRenderer() :mGpuBuffer(new GlStageBuffer), mPrograms(), mComposePool()
{
}
GlRenderer::~GlRenderer()
{
for (uint32_t i = 0; i < mComposePool.count; i++) {
if (mComposePool[i]) delete mComposePool[i];
}
for (uint32_t i = 0; i < mBlendPool.count; i++) {
if (mBlendPool[i]) delete mBlendPool[i];
}
--rendererCnt;
if (rendererCnt == 0 && initEngineCnt == 0) _termEngine();
}
void GlRenderer::initShaders()
{
// Solid Color Renderer
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(COLOR_VERT_SHADER, COLOR_FRAG_SHADER)));
// Linear Gradient Renderer
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(GRADIENT_VERT_SHADER, LINEAR_GRADIENT_FRAG_SHADER)));
// Radial Gradient Renderer
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(GRADIENT_VERT_SHADER, RADIAL_GRADIENT_FRAG_SHADER)));
// image Renderer
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(IMAGE_VERT_SHADER, IMAGE_FRAG_SHADER)));
// compose Renderer
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_ALPHA_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_INV_ALPHA_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_LUMA_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_INV_LUMA_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_ADD_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_SUB_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_INTERSECT_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_DIFF_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_LIGHTEN_FRAG_SHADER)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MASK_DARKEN_FRAG_SHADER)));
// stencil Renderer
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(STENCIL_VERT_SHADER, STENCIL_FRAG_SHADER)));
// blit Renderer
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(BLIT_VERT_SHADER, BLIT_FRAG_SHADER)));
// complex blending Renderer
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, MULTIPLY_BLEND_FRAG)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, SCREEN_BLEND_FRAG)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, OVERLAY_BLEND_FRAG)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, COLOR_DODGE_BLEND_FRAG)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, COLOR_BURN_BLEND_FRAG)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, HARD_LIGHT_BLEND_FRAG)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, SOFT_LIGHT_BLEND_FRAG)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, DIFFERENCE_BLEND_FRAG)));
mPrograms.push_back(make_unique<GlProgram>(GlShader::gen(MASK_VERT_SHADER, EXCLUSION_BLEND_FRAG)));
}
void GlRenderer::drawPrimitive(GlShape& sdata, uint8_t r, uint8_t g, uint8_t b, uint8_t a, RenderUpdateFlag flag, int32_t depth)
{
auto vp = currentPass()->getViewport();
auto bbox = sdata.geometry->getViewport();
bbox.intersect(vp);
bool complexBlend = beginComplexBlending(bbox, sdata.geometry->getBounds());
if (complexBlend) {
vp = currentPass()->getViewport();
bbox.intersect(vp);
}
auto x = bbox.x - vp.x;
auto y = bbox.y - vp.y;
auto w = bbox.w;
auto h = bbox.h;
GlRenderTask* task = nullptr;
if (mBlendMethod != BlendMethod::Normal && !complexBlend) task = new GlSimpleBlendTask(mBlendMethod, mPrograms[RT_Color].get());
else task = new GlRenderTask(mPrograms[RT_Color].get());
task->setDrawDepth(depth);
if (!sdata.geometry->draw(task, mGpuBuffer.get(), flag)) {
delete task;
return;
}
task->setViewport(RenderRegion {
x,
vp.h - y - h,
w,
h
});
GlRenderTask* stencilTask = nullptr;
GlStencilMode stencilMode = sdata.geometry->getStencilMode(flag);
if (stencilMode != GlStencilMode::None) {
stencilTask = new GlRenderTask(mPrograms[RT_Stencil].get(), task);
stencilTask->setDrawDepth(depth);
}
a = MULTIPLY(a, sdata.opacity);
if (flag & RenderUpdateFlag::Stroke) {
float strokeWidth = sdata.rshape->strokeWidth() * sdata.geometry->getTransformMatrix().e11;
if (strokeWidth < MIN_GL_STROKE_WIDTH) {
float alpha = strokeWidth / MIN_GL_STROKE_WIDTH;
a = MULTIPLY(a, static_cast<uint8_t>(alpha * 255));
}
}
// matrix buffer
{
const auto& matrix = sdata.geometry->getTransformMatrix();
float matrix44[16];
currentPass()->getMatrix(matrix44, matrix);
uint32_t loc = task->getProgram()->getUniformBlockIndex("Matrix");
uint32_t viewOffset = mGpuBuffer->push(matrix44, 16 * sizeof(float), true);
task->addBindResource(GlBindingResource{
0,
loc,
mGpuBuffer->getBufferId(),
viewOffset,
16 * sizeof(float),
});
if (stencilTask) {
stencilTask->addBindResource(GlBindingResource{
0,
static_cast<uint32_t>(stencilTask->getProgram()->getUniformBlockIndex("Matrix")),
mGpuBuffer->getBufferId(),
viewOffset,
16 * sizeof(float),
});
}
}
// color
{
float color[4] = {r / 255.f, g / 255.f, b / 255.f, a / 255.f};
uint32_t loc = task->getProgram()->getUniformBlockIndex("ColorInfo");
task->addBindResource(GlBindingResource{
1,
loc,
mGpuBuffer->getBufferId(),
mGpuBuffer->push(color, 4 * sizeof(float), true),
4 * sizeof(float),
});
}
if (stencilTask) {
currentPass()->addRenderTask(new GlStencilCoverTask(stencilTask, task, stencilMode));
} else {
currentPass()->addRenderTask(task);
}
if (complexBlend) {
auto task = new GlRenderTask(mPrograms[RT_Stencil].get());
sdata.geometry->draw(task, mGpuBuffer.get(), flag);
endBlendingCompose(task, sdata.geometry->getTransformMatrix());
}
}
void GlRenderer::drawPrimitive(GlShape& sdata, const Fill* fill, RenderUpdateFlag flag, int32_t depth)
{
auto vp = currentPass()->getViewport();
auto bbox = sdata.geometry->getViewport();
bbox.intersect(vp);
const Fill::ColorStop* stops = nullptr;
auto stopCnt = min(fill->colorStops(&stops),
static_cast<uint32_t>(MAX_GRADIENT_STOPS));
if (stopCnt < 2) return;
GlRenderTask* task = nullptr;
if (fill->type() == Type::LinearGradient) {
task = new GlRenderTask(mPrograms[RT_LinGradient].get());
} else if (fill->type() == Type::RadialGradient) {
task = new GlRenderTask(mPrograms[RT_RadGradient].get());
} else {
return;
}
task->setDrawDepth(depth);
if (!sdata.geometry->draw(task, mGpuBuffer.get(), flag)) {
delete task;
return;
}
bool complexBlend = beginComplexBlending(bbox, sdata.geometry->getBounds());
if (complexBlend) vp = currentPass()->getViewport();
auto x = bbox.x - vp.x;
auto y = bbox.y - vp.y;
task->setViewport(RenderRegion {
x,
vp.h - y - bbox.h,
bbox.w,
bbox.h
});
GlRenderTask* stencilTask = nullptr;
GlStencilMode stencilMode = sdata.geometry->getStencilMode(flag);
if (stencilMode != GlStencilMode::None) {
stencilTask = new GlRenderTask(mPrograms[RT_Stencil].get(), task);
stencilTask->setDrawDepth(depth);
}
// matrix buffer
{
const auto& matrix = sdata.geometry->getTransformMatrix();
float invMat4[16];
Matrix inv;
inverse(&fill->transform(), &inv);
GET_MATRIX44(inv, invMat4);
float matrix44[16];
currentPass()->getMatrix(matrix44, matrix);
uint32_t loc = task->getProgram()->getUniformBlockIndex("Matrix");
uint32_t viewOffset = mGpuBuffer->push(matrix44, 16 * sizeof(float), true);
task->addBindResource(GlBindingResource{
0,
loc,
mGpuBuffer->getBufferId(),
viewOffset,
16 * sizeof(float),
});
if (stencilTask) {
stencilTask->addBindResource(GlBindingResource{
0,
static_cast<uint32_t>(stencilTask->getProgram()->getUniformBlockIndex("Matrix")),
mGpuBuffer->getBufferId(),
viewOffset,
16 * sizeof(float),
});
}
loc = task->getProgram()->getUniformBlockIndex("InvMatrix");
viewOffset = mGpuBuffer->push(invMat4, 16 * sizeof(float), true);
task->addBindResource(GlBindingResource{
1,
loc,
mGpuBuffer->getBufferId(),
viewOffset,
16 * sizeof(float),
});
}
float alpha = 1.0f;
if (flag & RenderUpdateFlag::GradientStroke) {
float strokeWidth = sdata.rshape->strokeWidth();
if (strokeWidth < MIN_GL_STROKE_WIDTH) {
alpha = strokeWidth / MIN_GL_STROKE_WIDTH;
}
}
// gradient block
{
GlBindingResource gradientBinding{};
uint32_t loc = task->getProgram()->getUniformBlockIndex("GradientInfo");
if (fill->type() == Type::LinearGradient) {
auto linearFill = static_cast<const LinearGradient*>(fill);
GlLinearGradientBlock gradientBlock;
gradientBlock.nStops[1] = NOISE_LEVEL;
gradientBlock.nStops[2] = static_cast<int32_t>(fill->spread()) * 1.f;
uint32_t nStops = 0;
for (uint32_t i = 0; i < stopCnt; ++i) {
if (i > 0 && gradientBlock.stopPoints[nStops - 1] > stops[i].offset) continue;
gradientBlock.stopPoints[i] = stops[i].offset;
gradientBlock.stopColors[i * 4 + 0] = stops[i].r / 255.f;
gradientBlock.stopColors[i * 4 + 1] = stops[i].g / 255.f;
gradientBlock.stopColors[i * 4 + 2] = stops[i].b / 255.f;
gradientBlock.stopColors[i * 4 + 3] = stops[i].a / 255.f * alpha;
nStops++;
}
gradientBlock.nStops[0] = nStops * 1.f;
float x1, x2, y1, y2;
linearFill->linear(&x1, &y1, &x2, &y2);
gradientBlock.startPos[0] = x1;
gradientBlock.startPos[1] = y1;
gradientBlock.stopPos[0] = x2;
gradientBlock.stopPos[1] = y2;
gradientBinding = GlBindingResource{
2,
loc,
mGpuBuffer->getBufferId(),
mGpuBuffer->push(&gradientBlock, sizeof(GlLinearGradientBlock), true),
sizeof(GlLinearGradientBlock),
};
} else {
auto radialFill = static_cast<const RadialGradient*>(fill);
GlRadialGradientBlock gradientBlock;
gradientBlock.nStops[1] = NOISE_LEVEL;
gradientBlock.nStops[2] = static_cast<int32_t>(fill->spread()) * 1.f;
uint32_t nStops = 0;
for (uint32_t i = 0; i < stopCnt; ++i) {
if (i > 0 && gradientBlock.stopPoints[nStops - 1] > stops[i].offset) continue;
gradientBlock.stopPoints[i] = stops[i].offset;
gradientBlock.stopColors[i * 4 + 0] = stops[i].r / 255.f;
gradientBlock.stopColors[i * 4 + 1] = stops[i].g / 255.f;
gradientBlock.stopColors[i * 4 + 2] = stops[i].b / 255.f;
gradientBlock.stopColors[i * 4 + 3] = stops[i].a / 255.f * alpha;
nStops++;
}
gradientBlock.nStops[0] = nStops * 1.f;
float x, y, r;
radialFill->radial(&x, &y, &r);
gradientBlock.centerPos[0] = x;
gradientBlock.centerPos[1] = y;
gradientBlock.radius[0] = r;
gradientBinding = GlBindingResource{
2,
loc,
mGpuBuffer->getBufferId(),
mGpuBuffer->push(&gradientBlock, sizeof(GlRadialGradientBlock), true),
sizeof(GlRadialGradientBlock),
};
}
task->addBindResource(gradientBinding);
}
if (stencilTask) {
currentPass()->addRenderTask(new GlStencilCoverTask(stencilTask, task, stencilMode));
} else {
currentPass()->addRenderTask(task);
}
if (complexBlend) {
auto task = new GlRenderTask(mPrograms[RT_Stencil].get());
sdata.geometry->draw(task, mGpuBuffer.get(), flag);
endBlendingCompose(task, sdata.geometry->getTransformMatrix());
}
}
void GlRenderer::drawClip(Array<RenderData>& clips)
{
Array<float> identityVertex(4 * 2);
float left = -1.f;
float top = 1.f;
float right = 1.f;
float bottom = -1.f;
identityVertex.push(left);
identityVertex.push(top);
identityVertex.push(left);
identityVertex.push(bottom);
identityVertex.push(right);
identityVertex.push(top);
identityVertex.push(right);
identityVertex.push(bottom);
Array<uint32_t> identityIndex(6);
identityIndex.push(0);
identityIndex.push(1);
identityIndex.push(2);
identityIndex.push(2);
identityIndex.push(1);
identityIndex.push(3);
float mat4[16];
memset(mat4, 0, sizeof(float) * 16);
mat4[0] = 1.f;
mat4[5] = 1.f;
mat4[10] = 1.f;
mat4[15] = 1.f;
auto identityVertexOffset = mGpuBuffer->push(identityVertex.data, 8 * sizeof(float));
auto identityIndexOffset = mGpuBuffer->push(identityIndex.data, 6 * sizeof(uint32_t));
auto mat4Offset = mGpuBuffer->push(mat4, 16 * sizeof(float), true);
Array<int32_t> clipDepths(clips.count);
clipDepths.count = clips.count;
for (int32_t i = clips.count - 1; i >= 0; i--) {
clipDepths[i] = currentPass()->nextDrawDepth();
}
const auto& vp = currentPass()->getViewport();
for (uint32_t i = 0; i < clips.count; ++i) {
auto sdata = static_cast<GlShape*>(clips[i]);
auto clipTask = new GlRenderTask(mPrograms[RT_Stencil].get());
clipTask->setDrawDepth(clipDepths[i]);
sdata->geometry->draw(clipTask, mGpuBuffer.get(), RenderUpdateFlag::Path);
auto bbox = sdata->geometry->getViewport();
bbox.intersect(vp);
auto x = bbox.x - vp.x;
auto y = bbox.y - vp.y;
clipTask->setViewport(RenderRegion {
x,
vp.h - y - bbox.h,
bbox.w,
bbox.h,
});
const auto& matrix = sdata->geometry->getTransformMatrix();
float matrix44[16];
currentPass()->getMatrix(matrix44, matrix);
uint32_t loc = clipTask->getProgram()->getUniformBlockIndex("Matrix");
uint32_t viewOffset = mGpuBuffer->push(matrix44, 16 * sizeof(float), true);
clipTask->addBindResource(GlBindingResource{
0,
loc,
mGpuBuffer->getBufferId(),
viewOffset,
16 * sizeof(float),
});
auto maskTask = new GlRenderTask(mPrograms[RT_Stencil].get());
maskTask->setDrawDepth(clipDepths[i]);
maskTask->addVertexLayout(GlVertexLayout{0, 2, 2 * sizeof(float), identityVertexOffset});
maskTask->addBindResource(GlBindingResource{
0,
loc,
mGpuBuffer->getBufferId(),
mat4Offset, 16 * sizeof(float),
});
maskTask->setDrawRange(identityIndexOffset, 6);
maskTask->setViewport(RenderRegion{0, 0, static_cast<int32_t>(vp.w), static_cast<int32_t>(vp.h)});
currentPass()->addRenderTask(new GlClipTask(clipTask, maskTask));
}
}
GlRenderPass* GlRenderer::currentPass()
{
if (mRenderPassStack.empty()) return nullptr;
return &mRenderPassStack.back();
}
bool GlRenderer::beginComplexBlending(const RenderRegion& vp, RenderRegion bounds)
{
if (vp.w == 0 || vp.h == 0) return false;
bounds.intersect(vp);
if (bounds.w == 0 || bounds.h == 0) return false;
if (mBlendMethod == BlendMethod::Normal || mBlendMethod == BlendMethod::Add || mBlendMethod == BlendMethod::Darken || mBlendMethod == BlendMethod::Lighten) return false;
if (mBlendPool.empty()) mBlendPool.push(new GlRenderTargetPool(surface.w, surface.h));
auto blendFbo = mBlendPool[0]->getRenderTarget(bounds);
mRenderPassStack.emplace_back(GlRenderPass{blendFbo});
return true;
}
void GlRenderer::endBlendingCompose(GlRenderTask* stencilTask, const Matrix& matrix)
{
auto blendPass = std::move(mRenderPassStack.back());
mRenderPassStack.pop_back();
blendPass.setDrawDepth(currentPass()->nextDrawDepth());
auto composeTask = blendPass.endRenderPass<GlComposeTask>(nullptr, currentPass()->getFboId());
const auto& vp = blendPass.getViewport();
if (mBlendPool.count < 2) mBlendPool.push(new GlRenderTargetPool(surface.w, surface.h));
auto dstCopyFbo = mBlendPool[1]->getRenderTarget(vp);
{
const auto& passVp = currentPass()->getViewport();
auto x = vp.x;
auto y = vp.y;
auto w = vp.w;
auto h = vp.h;
stencilTask->setViewport(RenderRegion{
x,
passVp.h - y - h,
w,
h,
});
}
stencilTask->setDrawDepth(currentPass()->nextDrawDepth());
{
// set view matrix
uint32_t loc = stencilTask->getProgram()->getUniformBlockIndex("Matrix");
float matrix44[16];
currentPass()->getMatrix(matrix44, matrix);
uint32_t viewOffset = mGpuBuffer->push(matrix44, 16 * sizeof(float), true);
stencilTask->addBindResource(GlBindingResource{
0,
loc,
mGpuBuffer->getBufferId(),
viewOffset,
16 * sizeof(float),
});
}
auto task = new GlComplexBlendTask(getBlendProgram(), currentPass()->getFbo(), dstCopyFbo, stencilTask, composeTask);
prepareCmpTask(task, vp, blendPass.getFboWidth(), blendPass.getFboHeight());
task->setDrawDepth(currentPass()->nextDrawDepth());
// src and dst texture
{
uint32_t loc = task->getProgram()->getUniformLocation("uSrcTexture");
task->addBindResource(GlBindingResource{1, blendPass.getFbo()->getColorTexture(), loc});
}
{
uint32_t loc = task->getProgram()->getUniformLocation("uDstTexture");
task->addBindResource(GlBindingResource{2, dstCopyFbo->getColorTexture(), loc});
}
currentPass()->addRenderTask(task);
}
GlProgram* GlRenderer::getBlendProgram()
{
switch (mBlendMethod) {
case BlendMethod::Multiply:
return mPrograms[RT_MultiplyBlend].get();
case BlendMethod::Screen:
return mPrograms[RT_ScreenBlend].get();
case BlendMethod::Overlay:
return mPrograms[RT_OverlayBlend].get();
case BlendMethod::ColorDodge:
return mPrograms[RT_ColorDodgeBlend].get();
case BlendMethod::ColorBurn:
return mPrograms[RT_ColorBurnBlend].get();
case BlendMethod::HardLight:
return mPrograms[RT_HardLightBlend].get();
case BlendMethod::SoftLight:
return mPrograms[RT_SoftLightBlend].get();
case BlendMethod::Difference:
return mPrograms[RT_DifferenceBlend].get();
case BlendMethod::Exclusion:
return mPrograms[RT_ExclusionBlend].get();
default:
return nullptr;
}
}
void GlRenderer::prepareBlitTask(GlBlitTask* task)
{
RenderRegion region{0, 0, static_cast<int32_t>(surface.w), static_cast<int32_t>(surface.h)};
prepareCmpTask(task, region, surface.w, surface.h);
{
uint32_t loc = task->getProgram()->getUniformLocation("uSrcTexture");
task->addBindResource(GlBindingResource{0, task->getColorTexture(), loc});
}
}
void GlRenderer::prepareCmpTask(GlRenderTask* task, const RenderRegion& vp, uint32_t cmpWidth, uint32_t cmpHeight)
{
// we use 1:1 blit mapping since compositor fbo is same size as root fbo
Array<float> vertices(4 * 4);
const auto& passVp = currentPass()->getViewport();
auto taskVp = vp;
taskVp.intersect(passVp);
auto x = taskVp.x - passVp.x;
auto y = taskVp.y - passVp.y;
auto w = taskVp.w;
auto h = taskVp.h;
float rw = static_cast<float>(passVp.w);
float rh = static_cast<float>(passVp.h);
float l = static_cast<float>(x);
float t = static_cast<float>(rh - y);
float r = static_cast<float>(x + w);
float b = static_cast<float>(rh - y - h);
// map vp ltrp to -1:1
float left = (l / rw) * 2.f - 1.f;
float top = (t / rh) * 2.f - 1.f;
float right = (r / rw) * 2.f - 1.f;
float bottom = (b / rh) * 2.f - 1.f;
float uw = static_cast<float>(w) / static_cast<float>(cmpWidth);
float uh = static_cast<float>(h) / static_cast<float>(cmpHeight);
// left top point
vertices.push(left);
vertices.push(top);
vertices.push(0.f);
vertices.push(uh);
// left bottom point
vertices.push(left);
vertices.push(bottom);
vertices.push(0.f);
vertices.push(0.f);
// right top point
vertices.push(right);
vertices.push(top);
vertices.push(uw);
vertices.push(uh);
// right bottom point
vertices.push(right);
vertices.push(bottom);
vertices.push(uw);
vertices.push(0.f);
Array<uint32_t> indices(6);
indices.push(0);
indices.push(1);
indices.push(2);
indices.push(2);
indices.push(1);
indices.push(3);
uint32_t vertexOffset = mGpuBuffer->push(vertices.data, vertices.count * sizeof(float));
uint32_t indexOffset = mGpuBuffer->push(indices.data, indices.count * sizeof(uint32_t));
task->addVertexLayout(GlVertexLayout{0, 2, 4 * sizeof(float), vertexOffset});
task->addVertexLayout(GlVertexLayout{1, 2, 4 * sizeof(float), vertexOffset + 2 * sizeof(float)});
task->setDrawRange(indexOffset, indices.count);
task->setViewport(RenderRegion{
x,
static_cast<int32_t>((passVp.h - y - h)),
w,
h,
});
}
void GlRenderer::endRenderPass(RenderCompositor* cmp)
{
auto gl_cmp = static_cast<GlCompositor*>(cmp);
if (cmp->method != MaskMethod::None) {
auto self_pass = std::move(mRenderPassStack.back());
mRenderPassStack.pop_back();
// mask is pushed first
auto mask_pass = std::move(mRenderPassStack.back());
mRenderPassStack.pop_back();
if (self_pass.isEmpty() || mask_pass.isEmpty()) return;
GlProgram* program = nullptr;
switch(cmp->method) {
case MaskMethod::Alpha:
program = mPrograms[RT_MaskAlpha].get();
break;
case MaskMethod::InvAlpha:
program = mPrograms[RT_MaskAlphaInv].get();
break;
case MaskMethod::Luma:
program = mPrograms[RT_MaskLuma].get();
break;
case MaskMethod::InvLuma:
program = mPrograms[RT_MaskLumaInv].get();
break;
case MaskMethod::Add:
program = mPrograms[RT_MaskAdd].get();
break;
case MaskMethod::Subtract:
program = mPrograms[RT_MaskSub].get();
break;
case MaskMethod::Intersect:
program = mPrograms[RT_MaskIntersect].get();
break;
case MaskMethod::Difference:
program = mPrograms[RT_MaskDifference].get();
break;
case MaskMethod::Lighten:
program = mPrograms[RT_MaskLighten].get();
break;
case MaskMethod::Darken:
program = mPrograms[RT_MaskDarken].get();
break;
default:
break;
}
if (!program) return;
auto prev_task = mask_pass.endRenderPass<GlComposeTask>(nullptr, currentPass()->getFboId());
prev_task->setDrawDepth(currentPass()->nextDrawDepth());
prev_task->setRenderSize(static_cast<uint32_t>(gl_cmp->bbox.w), static_cast<uint32_t>(gl_cmp->bbox.h));
prev_task->setViewport(gl_cmp->bbox);
auto compose_task = self_pass.endRenderPass<GlDrawBlitTask>(program, currentPass()->getFboId());
compose_task->setRenderSize(static_cast<uint32_t>(gl_cmp->bbox.w), static_cast<uint32_t>(gl_cmp->bbox.h));
compose_task->setPrevTask(prev_task);
prepareCmpTask(compose_task, gl_cmp->bbox, self_pass.getFboWidth(), self_pass.getFboHeight());
compose_task->addBindResource(GlBindingResource{0, self_pass.getTextureId(), (uint)program->getUniformLocation("uSrcTexture")});
compose_task->addBindResource(GlBindingResource{1, mask_pass.getTextureId(), (uint)program->getUniformLocation("uMaskTexture")});
compose_task->setDrawDepth(currentPass()->nextDrawDepth());
compose_task->setParentSize(static_cast<uint32_t>(currentPass()->getViewport().w), static_cast<uint32_t>(currentPass()->getViewport().h));
currentPass()->addRenderTask(compose_task);
} else {
auto renderPass = std::move(mRenderPassStack.back());
mRenderPassStack.pop_back();
if (renderPass.isEmpty()) return;
auto task = renderPass.endRenderPass<GlDrawBlitTask>(
mPrograms[RT_Image].get(), currentPass()->getFboId());
task->setRenderSize(static_cast<uint32_t>(gl_cmp->bbox.w), static_cast<uint32_t>(gl_cmp->bbox.h));
prepareCmpTask(task, gl_cmp->bbox, renderPass.getFboWidth(), renderPass.getFboHeight());
task->setDrawDepth(currentPass()->nextDrawDepth());
// matrix buffer
{
float matrix[16];
memset(matrix, 0, 16 * sizeof(float));
matrix[0] = 1.f;
matrix[5] = 1.f;
matrix[10] = 1.f;
matrix[15] = 1.f;
uint32_t loc = task->getProgram()->getUniformBlockIndex("Matrix");
task->addBindResource(GlBindingResource{
0,
loc,
mGpuBuffer->getBufferId(),
mGpuBuffer->push(matrix, 16 * sizeof(float), true),
16 * sizeof(float),
});
}
// image info
{
uint32_t info[4] = {(uint32_t)ColorSpace::ABGR8888, 0, cmp->opacity, 0};
uint32_t loc = task->getProgram()->getUniformBlockIndex("ColorInfo");
task->addBindResource(GlBindingResource{
1,
loc,
mGpuBuffer->getBufferId(),
mGpuBuffer->push(info, 4 * sizeof(uint32_t), true),
4 * sizeof(uint32_t),
});
}
// texture id
{
uint32_t loc = task->getProgram()->getUniformLocation("uTexture");
task->addBindResource(GlBindingResource{0, renderPass.getTextureId(), loc});
}
task->setParentSize(static_cast<uint32_t>(currentPass()->getViewport().w), static_cast<uint32_t>(currentPass()->getViewport().h));
currentPass()->addRenderTask(std::move(task));
}
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
bool GlRenderer::clear()
{
clearDisposes();
mClearBuffer = true;
return true;
}
bool GlRenderer::target(int32_t id, uint32_t w, uint32_t h)
{
if (id == GL_INVALID_VALUE || w == 0 || h == 0) return false;
surface.stride = w;
surface.w = w;
surface.h = h;
mTargetFboId = static_cast<GLint>(id);
mRootTarget = make_unique<GlRenderTarget>(surface.w, surface.h);
mRootTarget->setViewport(RenderRegion{0, 0, static_cast<int32_t>(surface.w), static_cast<int32_t>(surface.h)});
mRootTarget->init(mTargetFboId);
mRenderPassStack.clear();
mComposeStack.clear();
for (uint32_t i = 0; i < mComposePool.count; i++) delete mComposePool[i];
for (uint32_t i = 0; i < mBlendPool.count; i++) delete mBlendPool[i];
mComposePool.clear();
mBlendPool.clear();
return true;
}
bool GlRenderer::sync()
{
//nothing to be done.
if (mRenderPassStack.size() == 0) return true;
// Blend function for straight alpha
GL_CHECK(glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
GL_CHECK(glEnable(GL_BLEND));
GL_CHECK(glEnable(GL_SCISSOR_TEST));
GL_CHECK(glCullFace(GL_FRONT_AND_BACK));
GL_CHECK(glFrontFace(GL_CCW));
GL_CHECK(glEnable(GL_DEPTH_TEST));
GL_CHECK(glDepthFunc(GL_GREATER));
auto task = mRenderPassStack.front().endRenderPass<GlBlitTask>(mPrograms[RT_Blit].get(), mTargetFboId);
prepareBlitTask(task);
task->mClearBuffer = mClearBuffer;
task->setTargetViewport(RenderRegion{0, 0, static_cast<int32_t>(surface.w), static_cast<int32_t>(surface.h)});
mGpuBuffer->flushToGPU();
mGpuBuffer->bind();
task->run();
mGpuBuffer->unbind();
GL_CHECK(glDisable(GL_SCISSOR_TEST));
mRenderPassStack.clear();
clearDisposes();
delete task;
return true;
}
RenderRegion GlRenderer::region(RenderData data)
{
if (currentPass()->isEmpty()) return RenderRegion{0, 0, 0, 0};
auto shape = reinterpret_cast<GlShape*>(data);
auto bounds = shape->geometry->getBounds();
auto const& vp = currentPass()->getViewport();
bounds.intersect(vp);
return bounds;
}
bool GlRenderer::preRender()
{
if (mPrograms.size() == 0)
{
initShaders();
}
mRenderPassStack.emplace_back(GlRenderPass(mRootTarget.get()));
return true;
}
bool GlRenderer::postRender()
{
return true;
}
RenderCompositor* GlRenderer::target(const RenderRegion& region, TVG_UNUSED ColorSpace cs)
{
auto vp = region;
if (currentPass()->isEmpty()) return nullptr;
vp.intersect(currentPass()->getViewport());
mComposeStack.emplace_back(make_unique<GlCompositor>(vp));
return mComposeStack.back().get();
}
bool GlRenderer::beginComposite(RenderCompositor* cmp, MaskMethod method, uint8_t opacity)
{
if (!cmp) return false;
cmp->method = method;
cmp->opacity = opacity;
uint32_t index = mRenderPassStack.size() - 1;
if (index >= mComposePool.count) {
mComposePool.push( new GlRenderTargetPool(surface.w, surface.h));
}
auto glCmp = static_cast<GlCompositor*>(cmp);
if (glCmp->bbox.w > 0 && glCmp->bbox.h > 0) {
auto renderTarget = mComposePool[index]->getRenderTarget(glCmp->bbox);
mRenderPassStack.emplace_back(GlRenderPass(renderTarget));
} else {
// empty render pass
mRenderPassStack.emplace_back(GlRenderPass(nullptr));
}
return true;
}
bool GlRenderer::endComposite(RenderCompositor* cmp)
{
if (mComposeStack.empty()) return false;
if (mComposeStack.back().get() != cmp) return false;
// end current render pass;
auto currCmp = std::move(mComposeStack.back());
mComposeStack.pop_back();
assert(cmp == currCmp.get());
endRenderPass(currCmp.get());
return true;
}
bool GlRenderer::prepare(TVG_UNUSED RenderEffect* effect)
{
//TODO: Return if the current post effect requires the region expansion
return false;
}
bool GlRenderer::effect(TVG_UNUSED RenderCompositor* cmp, TVG_UNUSED const RenderEffect* effect)
{
TVGLOG("GL_ENGINE", "SceneEffect(%d) is not supported", (int)effect->type);
return false;
}
ColorSpace GlRenderer::colorSpace()
{
return ColorSpace::Unknown;
}
const RenderSurface* GlRenderer::mainSurface()
{
return &surface;
}
bool GlRenderer::blend(BlendMethod method)
{
if (method == mBlendMethod) return true;
mBlendMethod = method;
return true;
}
bool GlRenderer::renderImage(void* data)
{
auto sdata = static_cast<GlShape*>(data);
if (!sdata) return false;
if (currentPass()->isEmpty()) return true;
if ((sdata->updateFlag & RenderUpdateFlag::Image) == 0) return true;
auto vp = currentPass()->getViewport();
auto bbox = sdata->geometry->getViewport();
bbox.intersect(vp);
if (bbox.w <= 0 || bbox.h <= 0) return true;
auto x = bbox.x - vp.x;
auto y = bbox.y - vp.y;
int32_t drawDepth = currentPass()->nextDrawDepth();
if (!sdata->clips.empty()) drawClip(sdata->clips);
auto task = new GlRenderTask(mPrograms[RT_Image].get());
task->setDrawDepth(drawDepth);
if (!sdata->geometry->draw(task, mGpuBuffer.get(), RenderUpdateFlag::Image)) {
delete task;
return true;
}
bool complexBlend = beginComplexBlending(bbox, sdata->geometry->getBounds());
if (complexBlend) vp = currentPass()->getViewport();
// matrix buffer
{
const auto& matrix = sdata->geometry->getTransformMatrix();
float matrix44[16];
currentPass()->getMatrix(matrix44, matrix);
uint32_t loc = task->getProgram()->getUniformBlockIndex("Matrix");
task->addBindResource(GlBindingResource{
0,
loc,
mGpuBuffer->getBufferId(),
mGpuBuffer->push(matrix44, 16 * sizeof(float), true),
16 * sizeof(float),
});
}
// image info
{
uint32_t info[4] = {(uint32_t)sdata->texColorSpace, sdata->texFlipY, sdata->opacity, 0};
uint32_t loc = task->getProgram()->getUniformBlockIndex("ColorInfo");
task->addBindResource(GlBindingResource{
1,
loc,
mGpuBuffer->getBufferId(),
mGpuBuffer->push(info, 4 * sizeof(uint32_t), true),
4 * sizeof(uint32_t),
});
}
// texture id
{
uint32_t loc = task->getProgram()->getUniformLocation("uTexture");
task->addBindResource(GlBindingResource{0, sdata->texId, loc});
}
task->setViewport(RenderRegion{
x,
vp.h - y - bbox.h,
bbox.w,
bbox.h
});
currentPass()->addRenderTask(task);
if (complexBlend) {
auto task = new GlRenderTask(mPrograms[RT_Stencil].get());
sdata->geometry->draw(task, mGpuBuffer.get(), RenderUpdateFlag::Image);
endBlendingCompose(task, sdata->geometry->getTransformMatrix());
}
return true;
}
bool GlRenderer::renderShape(RenderData data)
{
auto sdata = static_cast<GlShape*>(data);
if (currentPass()->isEmpty()) return true;
if (sdata->updateFlag == RenderUpdateFlag::None) return true;
const auto& vp = currentPass()->getViewport();
auto bbox = sdata->geometry->getViewport();
bbox.intersect(vp);
if (bbox.w <= 0 || bbox.h <= 0) return true;
uint8_t r = 0, g = 0, b = 0, a = 0;
int32_t drawDepth1 = 0, drawDepth2 = 0;
size_t flags = static_cast<size_t>(sdata->updateFlag);
if (flags == 0) return false;
if (flags & (RenderUpdateFlag::Gradient | RenderUpdateFlag::Color)) drawDepth1 = currentPass()->nextDrawDepth();
if (flags & (RenderUpdateFlag::Stroke | RenderUpdateFlag::GradientStroke)) drawDepth2 = currentPass()->nextDrawDepth();
if (!sdata->clips.empty()) drawClip(sdata->clips);
if (flags & (RenderUpdateFlag::Color | RenderUpdateFlag::Gradient))
{
auto gradient = sdata->rshape->fill;
if (gradient) drawPrimitive(*sdata, gradient, RenderUpdateFlag::Gradient, drawDepth1);
else {
sdata->rshape->fillColor(&r, &g, &b, &a);
if (a > 0)
{
drawPrimitive(*sdata, r, g, b, a, RenderUpdateFlag::Color, drawDepth1);
}
}
}
if (flags & (RenderUpdateFlag::Stroke | RenderUpdateFlag::GradientStroke))
{
auto gradient = sdata->rshape->strokeFill();
if (gradient) {
drawPrimitive(*sdata, gradient, RenderUpdateFlag::GradientStroke, drawDepth2);
} else {
if (sdata->rshape->strokeFill(&r, &g, &b, &a) && a > 0)
{
drawPrimitive(*sdata, r, g, b, a, RenderUpdateFlag::Stroke, drawDepth2);
}
}
}
return true;
}
void GlRenderer::dispose(RenderData data)
{
auto sdata = static_cast<GlShape*>(data);
if (!sdata) return;
//dispose the non thread-safety resources on clearDisposes() call
if (sdata->texId) {
ScopedLock lock(mDisposed.key);
mDisposed.textures.push(sdata->texId);
}
delete sdata;
}
static GLuint _genTexture(RenderSurface* image)
{
GLuint tex = 0;
GL_CHECK(glGenTextures(1, &tex));
GL_CHECK(glBindTexture(GL_TEXTURE_2D, tex));
GL_CHECK(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, image->w, image->h, 0, GL_RGBA, GL_UNSIGNED_BYTE, image->data));
GL_CHECK(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GL_CHECK(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
GL_CHECK(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GL_CHECK(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GL_CHECK(glBindTexture(GL_TEXTURE_2D, 0));
return tex;
}
RenderData GlRenderer::prepare(RenderSurface* image, RenderData data, const Matrix& transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags)
{
if (flags == RenderUpdateFlag::None) return data;
auto sdata = static_cast<GlShape*>(data);
if (!sdata) sdata = new GlShape;
sdata->viewWd = static_cast<float>(surface.w);
sdata->viewHt = static_cast<float>(surface.h);
sdata->updateFlag = RenderUpdateFlag::Image;
if (sdata->texId == 0) {
sdata->texId = _genTexture(image);
sdata->opacity = opacity;
sdata->texColorSpace = image->cs;
sdata->texFlipY = 1;
sdata->geometry = make_unique<GlGeometry>();
}
sdata->geometry->updateTransform(transform);
sdata->geometry->setViewport(mViewport);
sdata->geometry->tesselate(image, flags);
if (!clips.empty()) sdata->clips.push(clips);
return sdata;
}
RenderData GlRenderer::prepare(const RenderShape& rshape, RenderData data, const Matrix& transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags, bool clipper)
{
// If prepare for clip, only path is meaningful.
if (clipper) flags = RenderUpdateFlag::Path;
//prepare shape data
GlShape* sdata = static_cast<GlShape*>(data);
if (!sdata) {
sdata = new GlShape;
sdata->rshape = &rshape;
}
sdata->viewWd = static_cast<float>(surface.w);
sdata->viewHt = static_cast<float>(surface.h);
sdata->updateFlag = RenderUpdateFlag::None;
sdata->geometry = make_unique<GlGeometry>();
sdata->opacity = opacity;
//invisible?
uint8_t alphaF = 0, alphaS = 0;
rshape.fillColor(nullptr, nullptr, nullptr, &alphaF);
rshape.strokeFill(nullptr, nullptr, nullptr, &alphaS);
if ( ((flags & RenderUpdateFlag::Gradient) == 0) &&
((flags & RenderUpdateFlag::Color) && alphaF == 0) &&
((flags & RenderUpdateFlag::Stroke) && alphaS == 0) )
{
return sdata;
}
if (clipper) {
sdata->updateFlag = RenderUpdateFlag::Path;
} else {
if (alphaF) sdata->updateFlag = static_cast<RenderUpdateFlag>(RenderUpdateFlag::Color | sdata->updateFlag);
if (rshape.fill) sdata->updateFlag = static_cast<RenderUpdateFlag>(RenderUpdateFlag::Gradient | sdata->updateFlag);
if (alphaS) sdata->updateFlag = static_cast<RenderUpdateFlag>(RenderUpdateFlag::Stroke | sdata->updateFlag);
if (rshape.strokeFill()) sdata->updateFlag = static_cast<RenderUpdateFlag>(RenderUpdateFlag::GradientStroke | sdata->updateFlag);
}
if (sdata->updateFlag == RenderUpdateFlag::None) return sdata;
sdata->geometry->updateTransform(transform);
sdata->geometry->setViewport(mViewport);
if (sdata->updateFlag & (RenderUpdateFlag::Color | RenderUpdateFlag::Stroke | RenderUpdateFlag::Gradient | RenderUpdateFlag::GradientStroke | RenderUpdateFlag::Transform | RenderUpdateFlag::Path))
{
if (!sdata->geometry->tesselate(rshape, sdata->updateFlag)) return sdata;
}
if (!clipper && !clips.empty()) sdata->clips.push(clips);
return sdata;
}
RenderRegion GlRenderer::viewport()
{
return mViewport;
}
bool GlRenderer::viewport(const RenderRegion& vp)
{
mViewport = vp;
return true;
}
int GlRenderer::init(uint32_t threads)
{
if ((initEngineCnt++) > 0) return true;
//TODO: runtime linking?
return true;
}
int32_t GlRenderer::init()
{
return initEngineCnt;
}
int GlRenderer::term()
{
if ((--initEngineCnt) > 0) return true;
initEngineCnt = 0;
_termEngine();
return true;
}
GlRenderer* GlRenderer::gen()
{
//TODO: GL minimum version check, should be replaced with the runtime linking in GlRenderer::init()
GLint vMajor, vMinor;
glGetIntegerv(GL_MAJOR_VERSION, &vMajor);
glGetIntegerv(GL_MINOR_VERSION, &vMinor);
if (vMajor < TVG_REQUIRE_GL_MAJOR_VER || (vMajor == TVG_REQUIRE_GL_MAJOR_VER && vMinor < TVG_REQUIRE_GL_MINOR_VER)) {
TVGERR("GL_ENGINE", "OpenGL/ES version is not satisfied. Current: v%d.%d, Required: v%d.%d", vMajor, vMinor, TVG_REQUIRE_GL_MAJOR_VER, TVG_REQUIRE_GL_MINOR_VER);
return nullptr;
}
TVGLOG("GL_ENGINE", "OpenGL/ES version = v%d.%d", vMajor, vMinor);
return new GlRenderer();
}