thorvg/src/common/tvgMath.h
Mira Grudzinska 0fb37ea195 lottie: support rounded stars
Implementation of the roundness property
for a polystar. Only the corners that were
not subject to rounding by the inner or
outer roundness parameters are affected.

@Issue: https://github.com/thorvg/thorvg/issues/2230
2024-06-24 14:14:16 +09:00

215 lines
5 KiB
C++

/*
* Copyright (c) 2021 - 2024 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _TVG_MATH_H_
#define _TVG_MATH_H_
#define _USE_MATH_DEFINES
#include <float.h>
#include <math.h>
#include "tvgCommon.h"
#define MATH_PI 3.14159265358979323846f
#define MATH_PI2 1.57079632679489661923f
#define PATH_KAPPA 0.552284f
#define mathMin(x, y) (((x) < (y)) ? (x) : (y))
#define mathMax(x, y) (((x) > (y)) ? (x) : (y))
bool mathInverse(const Matrix* m, Matrix* out);
Matrix mathMultiply(const Matrix* lhs, const Matrix* rhs);
void mathRotate(Matrix* m, float degree);
bool mathIdentity(const Matrix* m);
void mathMultiply(Point* pt, const Matrix* transform);
static inline float mathDeg2Rad(float degree)
{
return degree * (MATH_PI / 180.0f);
}
static inline float mathRad2Deg(float radian)
{
return radian * (180.0f / MATH_PI);
}
static inline bool mathZero(float a)
{
return (fabsf(a) < FLT_EPSILON) ? true : false;
}
static inline bool mathEqual(float a, float b)
{
return (fabsf(a - b) < FLT_EPSILON);
}
static inline bool mathEqual(const Matrix& a, const Matrix& b)
{
if (!mathEqual(a.e11, b.e11) || !mathEqual(a.e12, b.e12) || !mathEqual(a.e13, b.e13) ||
!mathEqual(a.e21, b.e21) || !mathEqual(a.e22, b.e22) || !mathEqual(a.e23, b.e23) ||
!mathEqual(a.e31, b.e31) || !mathEqual(a.e32, b.e32) || !mathEqual(a.e33, b.e33)) {
return false;
}
return true;
}
static inline bool mathRightAngle(const Matrix* m)
{
auto radian = fabsf(atan2f(m->e21, m->e11));
if (radian < FLT_EPSILON || mathEqual(radian, MATH_PI2) || mathEqual(radian, MATH_PI)) return true;
return false;
}
static inline bool mathSkewed(const Matrix* m)
{
return (fabsf(m->e21 + m->e12) > FLT_EPSILON);
}
static inline void mathIdentity(Matrix* m)
{
m->e11 = 1.0f;
m->e12 = 0.0f;
m->e13 = 0.0f;
m->e21 = 0.0f;
m->e22 = 1.0f;
m->e23 = 0.0f;
m->e31 = 0.0f;
m->e32 = 0.0f;
m->e33 = 1.0f;
}
static inline void mathTransform(Matrix* transform, Point* coord)
{
auto x = coord->x;
auto y = coord->y;
coord->x = x * transform->e11 + y * transform->e12 + transform->e13;
coord->y = x * transform->e21 + y * transform->e22 + transform->e23;
}
static inline void mathScale(Matrix* m, float sx, float sy)
{
m->e11 *= sx;
m->e22 *= sy;
}
static inline void mathScaleR(Matrix* m, float x, float y)
{
if (x != 1.0f) {
m->e11 *= x;
m->e21 *= x;
}
if (y != 1.0f) {
m->e22 *= y;
m->e12 *= y;
}
}
static inline void mathTranslate(Matrix* m, float x, float y)
{
m->e13 += x;
m->e23 += y;
}
static inline void mathTranslateR(Matrix* m, float x, float y)
{
if (x == 0.0f && y == 0.0f) return;
m->e13 += (x * m->e11 + y * m->e12);
m->e23 += (x * m->e21 + y * m->e22);
}
static inline void mathLog(Matrix* m)
{
TVGLOG("MATH", "Matrix: [%f %f %f] [%f %f %f] [%f %f %f]", m->e11, m->e12, m->e13, m->e21, m->e22, m->e23, m->e31, m->e32, m->e33);
}
static inline float mathLength(const Point* a, const Point* b)
{
auto x = b->x - a->x;
auto y = b->y - a->y;
if (x < 0) x = -x;
if (y < 0) y = -y;
return (x > y) ? (x + 0.375f * y) : (y + 0.375f * x);
}
static inline float mathLength(const Point& a)
{
return sqrtf(a.x * a.x + a.y * a.y);
}
static inline Point operator-(const Point& lhs, const Point& rhs)
{
return {lhs.x - rhs.x, lhs.y - rhs.y};
}
static inline Point operator+(const Point& lhs, const Point& rhs)
{
return {lhs.x + rhs.x, lhs.y + rhs.y};
}
static inline Point operator*(const Point& lhs, float rhs)
{
return {lhs.x * rhs, lhs.y * rhs};
}
static inline Point operator*(const float& lhs, const Point& rhs)
{
return {lhs * rhs.x, lhs * rhs.y};
}
static inline Point operator/(const Point& lhs, const float rhs)
{
return {lhs.x / rhs, lhs.y / rhs};
}
template <typename T>
static inline T mathLerp(const T &start, const T &end, float t)
{
return static_cast<T>(start + (end - start) * t);
}
#endif //_TVG_MATH_H_