thorvg/src/lib/sw_engine/tvgSwShape.cpp
Hermet Park cf09ba5abd common sw_engine: code refactoring
Even though this enlarges the binary size by 300bytes,
use the array instead of individual implementations for better maintenance.
2023-07-17 20:14:58 +09:00

603 lines
18 KiB
C++

/*
* Copyright (c) 2020 - 2023 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tvgSwCommon.h"
#include "tvgBezier.h"
#include <float.h>
#include <math.h>
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
struct Line
{
Point pt1;
Point pt2;
};
static float _lineLength(const Point& pt1, const Point& pt2)
{
/* approximate sqrt(x*x + y*y) using alpha max plus beta min algorithm.
With alpha = 1, beta = 3/8, giving results with the largest error less
than 7% compared to the exact value. */
Point diff = {pt2.x - pt1.x, pt2.y - pt1.y};
if (diff.x < 0) diff.x = -diff.x;
if (diff.y < 0) diff.y = -diff.y;
return (diff.x > diff.y) ? (diff.x + diff.y * 0.375f) : (diff.y + diff.x * 0.375f);
}
static void _lineSplitAt(const Line& cur, float at, Line& left, Line& right)
{
auto len = _lineLength(cur.pt1, cur.pt2);
auto dx = ((cur.pt2.x - cur.pt1.x) / len) * at;
auto dy = ((cur.pt2.y - cur.pt1.y) / len) * at;
left.pt1 = cur.pt1;
left.pt2.x = left.pt1.x + dx;
left.pt2.y = left.pt1.y + dy;
right.pt1 = left.pt2;
right.pt2 = cur.pt2;
}
static void _outlineEnd(SwOutline& outline)
{
if (outline.pts.count == 0) return;
outline.cntrs.push(outline.pts.count - 1);
}
static void _outlineMoveTo(SwOutline& outline, const Point* to, const Matrix* transform)
{
if (outline.pts.count > 0) outline.cntrs.push(outline.pts.count - 1);
outline.pts.push(mathTransform(to, transform));
outline.types.push(SW_CURVE_TYPE_POINT);
}
static void _outlineLineTo(SwOutline& outline, const Point* to, const Matrix* transform)
{
outline.pts.push(mathTransform(to, transform));
outline.types.push(SW_CURVE_TYPE_POINT);
}
static void _outlineCubicTo(SwOutline& outline, const Point* ctrl1, const Point* ctrl2, const Point* to, const Matrix* transform)
{
outline.pts.push(mathTransform(ctrl1, transform));
outline.types.push(SW_CURVE_TYPE_CUBIC);
outline.pts.push(mathTransform(ctrl2, transform));
outline.types.push(SW_CURVE_TYPE_CUBIC);
outline.pts.push(mathTransform(to, transform));
outline.types.push(SW_CURVE_TYPE_POINT);
}
static void _outlineClose(SwOutline& outline)
{
uint32_t i = 0;
if (outline.cntrs.count > 0) i = outline.cntrs.last() + 1;
else i = 0; //First Path
//Make sure there is at least one point in the current path
if (outline.pts.count == i) return;
//Close the path
outline.pts.push(outline.pts.data[i]);
outline.types.push(SW_CURVE_TYPE_POINT);
outline.closed.push(true);
}
static void _dashLineTo(SwDashStroke& dash, const Point* to, const Matrix* transform)
{
Line cur = {dash.ptCur, *to};
auto len = _lineLength(cur.pt1, cur.pt2);
if (len < dash.curLen) {
dash.curLen -= len;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &dash.ptCur, transform);
_outlineLineTo(*dash.outline, to, transform);
}
} else {
while (len > dash.curLen) {
len -= dash.curLen;
Line left, right;
_lineSplitAt(cur, dash.curLen, left, right);;
dash.curIdx = (dash.curIdx + 1) % dash.cnt;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &left.pt1, transform);
_outlineLineTo(*dash.outline, &left.pt2, transform);
}
dash.curLen = dash.pattern[dash.curIdx];
dash.curOpGap = !dash.curOpGap;
cur = right;
dash.ptCur = cur.pt1;
}
//leftovers
dash.curLen -= len;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &cur.pt1, transform);
_outlineLineTo(*dash.outline, &cur.pt2, transform);
}
if (dash.curLen < 1 && TO_SWCOORD(len) > 1) {
//move to next dash
dash.curIdx = (dash.curIdx + 1) % dash.cnt;
dash.curLen = dash.pattern[dash.curIdx];
dash.curOpGap = !dash.curOpGap;
}
}
dash.ptCur = *to;
}
static void _dashCubicTo(SwDashStroke& dash, const Point* ctrl1, const Point* ctrl2, const Point* to, const Matrix* transform)
{
Bezier cur = {dash.ptCur, *ctrl1, *ctrl2, *to};
auto len = bezLength(cur);
if (len < dash.curLen) {
dash.curLen -= len;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &dash.ptCur, transform);
_outlineCubicTo(*dash.outline, ctrl1, ctrl2, to, transform);
}
} else {
while (len > dash.curLen) {
Bezier left, right;
len -= dash.curLen;
bezSplitAt(cur, dash.curLen, left, right);
if (!dash.curOpGap) {
// leftovers from a previous command don't require moveTo
if (dash.pattern[dash.curIdx] - dash.curLen < FLT_EPSILON) {
_outlineMoveTo(*dash.outline, &left.start, transform);
}
_outlineCubicTo(*dash.outline, &left.ctrl1, &left.ctrl2, &left.end, transform);
}
dash.curIdx = (dash.curIdx + 1) % dash.cnt;
dash.curLen = dash.pattern[dash.curIdx];
dash.curOpGap = !dash.curOpGap;
cur = right;
dash.ptCur = right.start;
}
//leftovers
dash.curLen -= len;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &cur.start, transform);
_outlineCubicTo(*dash.outline, &cur.ctrl1, &cur.ctrl2, &cur.end, transform);
}
if (dash.curLen < 1 && TO_SWCOORD(len) > 1) {
//move to next dash
dash.curIdx = (dash.curIdx + 1) % dash.cnt;
dash.curLen = dash.pattern[dash.curIdx];
dash.curOpGap = !dash.curOpGap;
}
}
dash.ptCur = *to;
}
static SwOutline* _genDashOutline(const RenderShape* rshape, const Matrix* transform)
{
const PathCommand* cmds = rshape->path.cmds.data;
auto cmdCnt = rshape->path.cmds.count;
const Point* pts = rshape->path.pts.data;
auto ptsCnt = rshape->path.pts.count;
//No actual shape data
if (cmdCnt == 0 || ptsCnt == 0) return nullptr;
SwDashStroke dash;
dash.curIdx = 0;
dash.curLen = 0;
dash.ptStart = {0, 0};
dash.ptCur = {0, 0};
dash.curOpGap = false;
const float* pattern;
dash.cnt = rshape->strokeDash(&pattern);
if (dash.cnt == 0) return nullptr;
//OPTMIZE ME: Use mempool???
dash.pattern = const_cast<float*>(pattern);
dash.outline = static_cast<SwOutline*>(calloc(1, sizeof(SwOutline)));
//smart reservation
auto outlinePtsCnt = 0;
auto outlineCntrsCnt = 0;
for (uint32_t i = 0; i < cmdCnt; ++i) {
switch (*(cmds + i)) {
case PathCommand::Close: {
++outlinePtsCnt;
break;
}
case PathCommand::MoveTo: {
++outlineCntrsCnt;
++outlinePtsCnt;
break;
}
case PathCommand::LineTo: {
++outlinePtsCnt;
break;
}
case PathCommand::CubicTo: {
outlinePtsCnt += 3;
break;
}
}
}
++outlinePtsCnt; //for close
++outlineCntrsCnt; //for end
//No idea exact count.... Reserve Approximitely 20x...
dash.outline->pts.grow(20 * outlinePtsCnt);
dash.outline->types.grow(20 * outlinePtsCnt);
dash.outline->cntrs.grow(20 * outlineCntrsCnt);
while (cmdCnt-- > 0) {
switch (*cmds) {
case PathCommand::Close: {
_dashLineTo(dash, &dash.ptStart, transform);
break;
}
case PathCommand::MoveTo: {
//reset the dash
dash.curIdx = 0;
dash.curLen = *dash.pattern;
dash.curOpGap = false;
dash.ptStart = dash.ptCur = *pts;
++pts;
break;
}
case PathCommand::LineTo: {
_dashLineTo(dash, pts, transform);
++pts;
break;
}
case PathCommand::CubicTo: {
_dashCubicTo(dash, pts, pts + 1, pts + 2, transform);
pts += 3;
break;
}
}
++cmds;
}
_outlineEnd(*dash.outline);
return dash.outline;
}
static bool _axisAlignedRect(const SwOutline* outline)
{
//Fast Track: axis-aligned rectangle?
if (outline->pts.count != 5) return false;
auto pt1 = outline->pts.data + 0;
auto pt2 = outline->pts.data + 1;
auto pt3 = outline->pts.data + 2;
auto pt4 = outline->pts.data + 3;
auto a = SwPoint{pt1->x, pt3->y};
auto b = SwPoint{pt3->x, pt1->y};
if ((*pt2 == a && *pt4 == b) || (*pt2 == b && *pt4 == a)) return true;
return false;
}
static bool _genOutline(SwShape* shape, const RenderShape* rshape, const Matrix* transform, SwMpool* mpool, unsigned tid, bool hasComposite)
{
const PathCommand* cmds = rshape->path.cmds.data;
auto cmdCnt = rshape->path.cmds.count;
const Point* pts = rshape->path.pts.data;
auto ptsCnt = rshape->path.pts.count;
//No actual shape data
if (cmdCnt == 0 || ptsCnt == 0) return false;
//smart reservation
auto outlinePtsCnt = 0;
auto outlineCntrsCnt = 0;
auto closeCnt = 0;
for (uint32_t i = 0; i < cmdCnt; ++i) {
switch (*(cmds + i)) {
case PathCommand::Close: {
++outlinePtsCnt;
++closeCnt;
break;
}
case PathCommand::MoveTo: {
++outlineCntrsCnt;
++outlinePtsCnt;
break;
}
case PathCommand::LineTo: {
++outlinePtsCnt;
break;
}
case PathCommand::CubicTo: {
outlinePtsCnt += 3;
break;
}
}
}
if (static_cast<uint32_t>(outlinePtsCnt - closeCnt) > ptsCnt) {
TVGERR("SW_ENGINE", "Wrong a pair of the commands & points - required(%d), current(%d)", outlinePtsCnt - closeCnt, ptsCnt);
return false;
}
++outlinePtsCnt; //for close
++outlineCntrsCnt; //for end
shape->outline = mpoolReqOutline(mpool, tid);
auto outline = shape->outline;
outline->pts.grow(outlinePtsCnt);
outline->types.grow(outlinePtsCnt);
outline->cntrs.grow(outlineCntrsCnt);
//Dash outlines are always opened.
//Only normal outlines use this information, it sholud be same to their contour counts.
outline->closed.reserve(outline->cntrs.reserved);
memset(outline->closed.data, 0x0, sizeof(bool) * outline->closed.reserved);
//Generate Outlines
while (cmdCnt-- > 0) {
switch (*cmds) {
case PathCommand::Close: {
_outlineClose(*outline);
break;
}
case PathCommand::MoveTo: {
_outlineMoveTo(*outline, pts, transform);
++pts;
break;
}
case PathCommand::LineTo: {
_outlineLineTo(*outline, pts, transform);
++pts;
break;
}
case PathCommand::CubicTo: {
_outlineCubicTo(*outline, pts, pts + 1, pts + 2, transform);
pts += 3;
break;
}
}
++cmds;
}
_outlineEnd(*outline);
outline->fillRule = rshape->rule;
shape->outline = outline;
shape->fastTrack = (!hasComposite && _axisAlignedRect(shape->outline));
return true;
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
bool shapePrepare(SwShape* shape, const RenderShape* rshape, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid, bool hasComposite)
{
if (!_genOutline(shape, rshape, transform, mpool, tid, hasComposite)) return false;
if (!mathUpdateOutlineBBox(shape->outline, clipRegion, renderRegion, shape->fastTrack)) return false;
//Keep it for Rasterization Region
shape->bbox = renderRegion;
//Check valid region
if (renderRegion.max.x - renderRegion.min.x < 1 && renderRegion.max.y - renderRegion.min.y < 1) return false;
//Check boundary
if (renderRegion.min.x >= clipRegion.max.x || renderRegion.min.y >= clipRegion.max.y ||
renderRegion.max.x <= clipRegion.min.x || renderRegion.max.y <= clipRegion.min.y) return false;
return true;
}
bool shapePrepared(const SwShape* shape)
{
return shape->rle ? true : false;
}
bool shapeGenRle(SwShape* shape, TVG_UNUSED const RenderShape* rshape, bool antiAlias)
{
//FIXME: Should we draw it?
//Case: Stroke Line
//if (shape.outline->opened) return true;
//Case A: Fast Track Rectangle Drawing
if (shape->fastTrack) return true;
//Case B: Normal Shape RLE Drawing
if ((shape->rle = rleRender(shape->rle, shape->outline, shape->bbox, antiAlias))) return true;
return false;
}
void shapeDelOutline(SwShape* shape, SwMpool* mpool, uint32_t tid)
{
mpoolRetOutline(mpool, tid);
shape->outline = nullptr;
}
void shapeReset(SwShape* shape)
{
rleReset(shape->rle);
rleReset(shape->strokeRle);
shape->fastTrack = false;
shape->bbox.reset();
}
void shapeFree(SwShape* shape)
{
rleFree(shape->rle);
shapeDelFill(shape);
if (shape->stroke) {
rleFree(shape->strokeRle);
strokeFree(shape->stroke);
}
}
void shapeDelStroke(SwShape* shape)
{
if (!shape->stroke) return;
rleFree(shape->strokeRle);
shape->strokeRle = nullptr;
strokeFree(shape->stroke);
shape->stroke = nullptr;
}
void shapeResetStroke(SwShape* shape, const RenderShape* rshape, const Matrix* transform)
{
if (!shape->stroke) shape->stroke = static_cast<SwStroke*>(calloc(1, sizeof(SwStroke)));
auto stroke = shape->stroke;
if (!stroke) return;
strokeReset(stroke, rshape, transform);
rleReset(shape->strokeRle);
}
bool shapeGenStrokeRle(SwShape* shape, const RenderShape* rshape, const Matrix* transform, const SwBBox& clipRegion, SwBBox& renderRegion, SwMpool* mpool, unsigned tid)
{
SwOutline* shapeOutline = nullptr;
SwOutline* strokeOutline = nullptr;
bool freeOutline = false;
bool ret = true;
//Dash Style Stroke
if (rshape->strokeDash(nullptr) > 0) {
shapeOutline = _genDashOutline(rshape, transform);
if (!shapeOutline) return false;
freeOutline = true;
//Normal Style stroke
} else {
if (!shape->outline) {
if (!_genOutline(shape, rshape, transform, mpool, tid, false)) return false;
}
shapeOutline = shape->outline;
}
if (!strokeParseOutline(shape->stroke, *shapeOutline)) {
ret = false;
goto fail;
}
strokeOutline = strokeExportOutline(shape->stroke, mpool, tid);
if (!mathUpdateOutlineBBox(strokeOutline, clipRegion, renderRegion, false)) {
ret = false;
goto fail;
}
shape->strokeRle = rleRender(shape->strokeRle, strokeOutline, renderRegion, true);
fail:
if (freeOutline) {
free(shapeOutline->cntrs.data);
free(shapeOutline->pts.data);
free(shapeOutline->types.data);
free(shapeOutline->closed.data);
free(shapeOutline);
}
mpoolRetStrokeOutline(mpool, tid);
return ret;
}
bool shapeGenFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, uint8_t opacity, bool ctable)
{
return fillGenColorTable(shape->fill, fill, transform, surface, opacity, ctable);
}
bool shapeGenStrokeFillColors(SwShape* shape, const Fill* fill, const Matrix* transform, SwSurface* surface, uint8_t opacity, bool ctable)
{
return fillGenColorTable(shape->stroke->fill, fill, transform, surface, opacity, ctable);
}
void shapeResetFill(SwShape* shape)
{
if (!shape->fill) {
shape->fill = static_cast<SwFill*>(calloc(1, sizeof(SwFill)));
if (!shape->fill) return;
}
fillReset(shape->fill);
}
void shapeResetStrokeFill(SwShape* shape)
{
if (!shape->stroke->fill) {
shape->stroke->fill = static_cast<SwFill*>(calloc(1, sizeof(SwFill)));
if (!shape->stroke->fill) return;
}
fillReset(shape->stroke->fill);
}
void shapeDelFill(SwShape* shape)
{
if (!shape->fill) return;
fillFree(shape->fill);
shape->fill = nullptr;
}
void shapeDelStrokeFill(SwShape* shape)
{
if (!shape->stroke->fill) return;
fillFree(shape->stroke->fill);
shape->stroke->fill = nullptr;
}