thorvg/src/lib/sw_engine/tvgSwShape.cpp
Hermet Park 36c76ca73c sw_engine: threading optimization
make it prepare step asynchronously.

Change-Id: Ifb85f01d579cf1c111558842496b93fcaef74cd9
2020-06-24 14:35:23 +09:00

661 lines
17 KiB
C++

/*
* Copyright (c) 2020 Samsung Electronics Co., Ltd All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#ifndef _TVG_SW_SHAPE_H_
#define _TVG_SW_SHAPE_H_
#include "tvgSwCommon.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
struct Line
{
Point pt1;
Point pt2;
};
static float _lineLength(const Point& pt1, const Point& pt2)
{
/* approximate sqrt(x*x + y*y) using alpha max plus beta min algorithm.
With alpha = 1, beta = 3/8, giving results with the largest error less
than 7% compared to the exact value. */
Point diff = {pt2.x - pt1.x, pt2.y - pt1.y};
if (diff.x < 0) diff.x = -diff.x;
if (diff.y < 0) diff.y = -diff.y;
return (diff.x > diff.y) ? (diff.x + diff.y * 0.375f) : (diff.y + diff.x * 0.375f);
}
static void _lineSplitAt(const Line& cur, float at, Line& left, Line& right)
{
auto len = _lineLength(cur.pt1, cur.pt2);
auto dx = ((cur.pt2.x - cur.pt1.x) / len) * at;
auto dy = ((cur.pt2.y - cur.pt1.y) / len) * at;
left.pt1 = cur.pt1;
left.pt2.x = left.pt1.x + dx;
left.pt2.y = left.pt1.y + dy;
right.pt1 = left.pt2;
right.pt2 = cur.pt2;
}
static void _growOutlineContour(SwOutline& outline, uint32_t n)
{
if (outline.reservedCntrsCnt >= outline.cntrsCnt + n) return;
outline.reservedCntrsCnt = outline.cntrsCnt + n;
outline.cntrs = static_cast<uint32_t*>(realloc(outline.cntrs, outline.reservedCntrsCnt * sizeof(uint32_t)));
assert(outline.cntrs);
}
static void _growOutlinePoint(SwOutline& outline, uint32_t n)
{
if (outline.reservedPtsCnt >= outline.ptsCnt + n) return;
outline.reservedPtsCnt = outline.ptsCnt + n;
outline.pts = static_cast<SwPoint*>(realloc(outline.pts, outline.reservedPtsCnt * sizeof(SwPoint)));
assert(outline.pts);
outline.types = static_cast<uint8_t*>(realloc(outline.types, outline.reservedPtsCnt * sizeof(uint8_t)));
assert(outline.types);
}
static void _delOutline(SwOutline* outline)
{
if (!outline) return;
if (outline->cntrs) free(outline->cntrs);
if (outline->pts) free(outline->pts);
if (outline->types) free(outline->types);
free(outline);
}
static void _outlineEnd(SwOutline& outline)
{
_growOutlineContour(outline, 1);
if (outline.ptsCnt > 0) {
outline.cntrs[outline.cntrsCnt] = outline.ptsCnt - 1;
++outline.cntrsCnt;
}
}
static void _outlineMoveTo(SwOutline& outline, const Point* to)
{
assert(to);
_growOutlinePoint(outline, 1);
outline.pts[outline.ptsCnt] = TO_SWPOINT(to);
outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT;
if (outline.ptsCnt > 0) {
_growOutlineContour(outline, 1);
outline.cntrs[outline.cntrsCnt] = outline.ptsCnt - 1;
++outline.cntrsCnt;
}
++outline.ptsCnt;
}
static void _outlineLineTo(SwOutline& outline, const Point* to)
{
assert(to);
_growOutlinePoint(outline, 1);
outline.pts[outline.ptsCnt] = TO_SWPOINT(to);
outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT;
++outline.ptsCnt;
}
static void _outlineCubicTo(SwOutline& outline, const Point* ctrl1, const Point* ctrl2, const Point* to)
{
assert(ctrl1 && ctrl2 && to);
_growOutlinePoint(outline, 3);
outline.pts[outline.ptsCnt] = TO_SWPOINT(ctrl1);
outline.types[outline.ptsCnt] = SW_CURVE_TYPE_CUBIC;
++outline.ptsCnt;
outline.pts[outline.ptsCnt] = TO_SWPOINT(ctrl2);
outline.types[outline.ptsCnt] = SW_CURVE_TYPE_CUBIC;
++outline.ptsCnt;
outline.pts[outline.ptsCnt] = TO_SWPOINT(to);
outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT;
++outline.ptsCnt;
}
static void _outlineClose(SwOutline& outline)
{
uint32_t i = 0;
if (outline.cntrsCnt > 0) {
i = outline.cntrs[outline.cntrsCnt - 1] + 1;
} else {
i = 0; //First Path
}
//Make sure there is at least one point in the current path
if (outline.ptsCnt == i) {
outline.opened = true;
return;
}
//Close the path
_growOutlinePoint(outline, 1);
outline.pts[outline.ptsCnt] = outline.pts[i];
outline.types[outline.ptsCnt] = SW_CURVE_TYPE_POINT;
++outline.ptsCnt;
outline.opened = false;
}
static void _initBBox(SwBBox& bbox)
{
bbox.min.x = bbox.min.y = 0;
bbox.max.x = bbox.max.y = 0;
}
static bool _updateBBox(SwOutline* outline, SwBBox& bbox)
{
if (!outline) return false;
auto pt = outline->pts;
assert(pt);
if (outline->ptsCnt <= 0) {
_initBBox(bbox);
return false;
}
auto xMin = pt->x;
auto xMax = pt->x;
auto yMin = pt->y;
auto yMax = pt->y;
++pt;
for(uint32_t i = 1; i < outline->ptsCnt; ++i, ++pt) {
assert(pt);
if (xMin > pt->x) xMin = pt->x;
if (xMax < pt->x) xMax = pt->x;
if (yMin > pt->y) yMin = pt->y;
if (yMax < pt->y) yMax = pt->y;
}
bbox.min.x = xMin >> 6;
bbox.max.x = (xMax + 63) >> 6;
bbox.min.y = yMin >> 6;
bbox.max.y = (yMax + 63) >> 6;
if (xMax - xMin < 1 || yMax - yMin < 1) return false;
return true;
}
static bool _checkValid(const SwOutline* outline, const SwBBox& bbox, const SwSize& clip)
{
assert(outline);
if (outline->ptsCnt == 0 || outline->cntrsCnt <= 0) return false;
//Check boundary
if (bbox.min.x >= clip.w || bbox.min.y >= clip.h || bbox.max.x <= 0 || bbox.max.y <= 0) return false;
return true;
}
static void _transformOutline(SwOutline* outline, const Matrix* transform)
{
if (!transform) return;
assert(outline);
for(uint32_t i = 0; i < outline->ptsCnt; ++i) {
auto dx = static_cast<float>(outline->pts[i].x >> 6);
auto dy = static_cast<float>(outline->pts[i].y >> 6);
auto tx = dx * transform->e11 + dy * transform->e12 + transform->e31;
auto ty = dx * transform->e21 + dy * transform->e22 + transform->e32;
auto pt = Point{tx, ty};
outline->pts[i] = TO_SWPOINT(&pt);
}
}
static void _dashLineTo(SwDashStroke& dash, const Point* to)
{
_growOutlinePoint(*dash.outline, dash.outline->ptsCnt >> 1);
_growOutlineContour(*dash.outline, dash.outline->cntrsCnt >> 1);
Line cur = {dash.ptCur, *to};
auto len = _lineLength(cur.pt1, cur.pt2);
if (len < dash.curLen) {
dash.curLen -= len;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &dash.ptCur);
_outlineLineTo(*dash.outline, to);
}
} else {
while (len > dash.curLen) {
len -= dash.curLen;
Line left, right;
_lineSplitAt(cur, dash.curLen, left, right);;
dash.curIdx = (dash.curIdx + 1) % dash.cnt;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &left.pt1);
_outlineLineTo(*dash.outline, &left.pt2);
}
dash.curLen = dash.pattern[dash.curIdx];
dash.curOpGap = !dash.curOpGap;
cur = right;
dash.ptCur = cur.pt1;
}
//leftovers
dash.curLen -= len;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &cur.pt1);
_outlineLineTo(*dash.outline, &cur.pt2);
}
if (dash.curLen < 1) {
//move to next dash
dash.curIdx = (dash.curIdx + 1) % dash.cnt;
dash.curLen = dash.pattern[dash.curIdx];
dash.curOpGap = !dash.curOpGap;
}
}
dash.ptCur = *to;
}
static void _dashCubicTo(SwDashStroke& dash, const Point* ctrl1, const Point* ctrl2, const Point* to)
{
_growOutlinePoint(*dash.outline, dash.outline->ptsCnt >> 1);
_growOutlineContour(*dash.outline, dash.outline->cntrsCnt >> 1);
Bezier cur = { dash.ptCur, *ctrl1, *ctrl2, *to};
auto len = bezLength(cur);
if (len < dash.curLen) {
dash.curLen -= len;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &dash.ptCur);
_outlineCubicTo(*dash.outline, ctrl1, ctrl2, to);
}
} else {
while (len > dash.curLen) {
Bezier left, right;
len -= dash.curLen;
bezSplitAt(cur, dash.curLen, left, right);
dash.curIdx = (dash.curIdx + 1) % dash.cnt;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &left.start);
_outlineCubicTo(*dash.outline, &left.ctrl1, &left.ctrl2, &left.end);
}
dash.curLen = dash.pattern[dash.curIdx];
dash.curOpGap = !dash.curOpGap;
cur = right;
dash.ptCur = right.start;
}
//leftovers
dash.curLen -= len;
if (!dash.curOpGap) {
_outlineMoveTo(*dash.outline, &cur.start);
_outlineCubicTo(*dash.outline, &cur.ctrl1, &cur.ctrl2, &cur.end);
}
if (dash.curLen < 1) {
//move to next dash
dash.curIdx = (dash.curIdx + 1) % dash.cnt;
dash.curLen = dash.pattern[dash.curIdx];
dash.curOpGap = !dash.curOpGap;
}
}
dash.ptCur = *to;
}
SwOutline* _genDashOutline(const Shape* sdata)
{
assert(sdata);
const PathCommand* cmds = nullptr;
auto cmdCnt = sdata->pathCommands(&cmds);
const Point* pts = nullptr;
auto ptsCnt = sdata->pathCoords(&pts);
//No actual shape data
if (cmdCnt == 0 || ptsCnt == 0) return nullptr;
SwDashStroke dash;
dash.curIdx = 0;
dash.curLen = 0;
dash.ptStart = {0, 0};
dash.ptCur = {0, 0};
dash.curOpGap = false;
const float* pattern;
dash.cnt = sdata->strokeDash(&pattern);
assert(dash.cnt > 0 && pattern);
//Is it safe to mutual exclusive?
dash.pattern = const_cast<float*>(pattern);
dash.outline = static_cast<SwOutline*>(calloc(1, sizeof(SwOutline)));
assert(dash.outline);
dash.outline->opened = true;
//smart reservation
auto outlinePtsCnt = 0;
auto outlineCntrsCnt = 0;
for (uint32_t i = 0; i < cmdCnt; ++i) {
switch(*(cmds + i)) {
case PathCommand::Close: {
++outlinePtsCnt;
break;
}
case PathCommand::MoveTo: {
++outlineCntrsCnt;
++outlinePtsCnt;
break;
}
case PathCommand::LineTo: {
++outlinePtsCnt;
break;
}
case PathCommand::CubicTo: {
outlinePtsCnt += 3;
break;
}
}
}
++outlinePtsCnt; //for close
++outlineCntrsCnt; //for end
//Reserve Approximitely 20x...
_growOutlinePoint(*dash.outline, outlinePtsCnt * 20);
_growOutlineContour(*dash.outline, outlineCntrsCnt * 20);
while (cmdCnt-- > 0) {
switch(*cmds) {
case PathCommand::Close: {
_dashLineTo(dash, &dash.ptStart);
break;
}
case PathCommand::MoveTo: {
//reset the dash
dash.curIdx = 0;
dash.curLen = *dash.pattern;
dash.curOpGap = false;
dash.ptStart = dash.ptCur = *pts;
++pts;
break;
}
case PathCommand::LineTo: {
_dashLineTo(dash, pts);
++pts;
break;
}
case PathCommand::CubicTo: {
_dashCubicTo(dash, pts, pts + 1, pts + 2);
pts += 3;
break;
}
}
++cmds;
}
_outlineEnd(*dash.outline);
return dash.outline;
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
bool shapeGenRle(SwShape& shape, const Shape* sdata, const SwSize& clip, const Matrix* transform)
{
if (!shapeGenOutline(shape, sdata)) return false;
_transformOutline(shape.outline, transform);
if (!_updateBBox(shape.outline, shape.bbox)) goto end;
if (!_checkValid(shape.outline, shape.bbox, clip)) goto end;
shape.rle = rleRender(shape.outline, shape.bbox, clip);
end:
if (shape.rle) return true;
return false;
}
void shapeDelOutline(SwShape& shape)
{
auto outline = shape.outline;
_delOutline(outline);
shape.outline = nullptr;
}
void shapeReset(SwShape& shape)
{
shapeDelOutline(shape);
rleFree(shape.rle);
shape.rle = nullptr;
_initBBox(shape.bbox);
}
bool shapeGenOutline(SwShape& shape, const Shape* sdata)
{
assert(sdata);
const PathCommand* cmds = nullptr;
auto cmdCnt = sdata->pathCommands(&cmds);
const Point* pts = nullptr;
auto ptsCnt = sdata->pathCoords(&pts);
//No actual shape data
if (cmdCnt == 0 || ptsCnt == 0) return false;
//smart reservation
auto outlinePtsCnt = 0;
auto outlineCntrsCnt = 0;
for (uint32_t i = 0; i < cmdCnt; ++i) {
switch(*(cmds + i)) {
case PathCommand::Close: {
++outlinePtsCnt;
break;
}
case PathCommand::MoveTo: {
++outlineCntrsCnt;
++outlinePtsCnt;
break;
}
case PathCommand::LineTo: {
++outlinePtsCnt;
break;
}
case PathCommand::CubicTo: {
outlinePtsCnt += 3;
break;
}
}
}
++outlinePtsCnt; //for close
++outlineCntrsCnt; //for end
auto outline = shape.outline;
if (!outline) outline = static_cast<SwOutline*>(calloc(1, sizeof(SwOutline)));
assert(outline);
outline->opened = true;
_growOutlinePoint(*outline, outlinePtsCnt);
_growOutlineContour(*outline, outlineCntrsCnt);
//Generate Outlines
while (cmdCnt-- > 0) {
switch(*cmds) {
case PathCommand::Close: {
_outlineClose(*outline);
break;
}
case PathCommand::MoveTo: {
_outlineMoveTo(*outline, pts);
++pts;
break;
}
case PathCommand::LineTo: {
_outlineLineTo(*outline, pts);
++pts;
break;
}
case PathCommand::CubicTo: {
_outlineCubicTo(*outline, pts, pts + 1, pts + 2);
pts += 3;
break;
}
}
++cmds;
}
_outlineEnd(*outline);
//FIXME:
//outline->flags = SwOutline::FillRule::Winding;
shape.outline = outline;
return true;
}
void shapeFree(SwShape& shape)
{
shapeDelOutline(shape);
rleFree(shape.rle);
if (shape.stroke) {
rleFree(shape.strokeRle);
strokeFree(shape.stroke);
}
}
void shapeDelStroke(SwShape& shape)
{
if (!shape.stroke) return;
rleFree(shape.strokeRle);
shape.strokeRle = nullptr;
strokeFree(shape.stroke);
shape.stroke = nullptr;
}
void shapeResetStroke(SwShape& shape, const Shape* sdata)
{
if (!shape.stroke) shape.stroke = static_cast<SwStroke*>(calloc(1, sizeof(SwStroke)));
auto stroke = shape.stroke;
assert(stroke);
strokeReset(*stroke, sdata);
rleFree(shape.strokeRle);
shape.strokeRle = nullptr;
}
bool shapeGenStrokeRle(SwShape& shape, const Shape* sdata, const SwSize& clip)
{
assert(sdata);
SwOutline* shapeOutline = nullptr;
//Dash Style Stroke
if (sdata->strokeDash(nullptr) > 0) {
shapeOutline = _genDashOutline(sdata);
if (!shapeOutline) return false;
//Normal Style stroke
} else {
if (!shape.outline) {
if (!shapeGenOutline(shape, sdata)) return false;
}
shapeOutline = shape.outline;
}
if (!strokeParseOutline(*shape.stroke, *shapeOutline)) return false;
auto strokeOutline = strokeExportOutline(*shape.stroke);
if (!strokeOutline) return false;
SwBBox bbox;
_updateBBox(strokeOutline, bbox);
if (!_checkValid(strokeOutline, bbox, clip)) return false;
shape.strokeRle = rleRender(strokeOutline, bbox, clip);
_delOutline(strokeOutline);
return true;
}
bool shapeGenFillColors(SwShape& shape, const Fill* fill, const Matrix* transform, bool ctable)
{
return fillGenColorTable(shape.fill, fill, transform, ctable);
}
void shapeResetFill(SwShape& shape)
{
if (!shape.fill) shape.fill = static_cast<SwFill*>(calloc(1, sizeof(SwFill)));
assert(shape.fill);
fillReset(shape.fill);
}
void shapeDelFill(SwShape& shape)
{
if (!shape.fill) return;
fillFree(shape.fill);
shape.fill = nullptr;
}
#endif /* _TVG_SW_SHAPE_H_ */