thorvg/src/common/tvgMath.cpp
Hermet Park 44955b704e common/math: code refactoring
Replaced the prefix "math" with "tvg" namespace.
2024-07-10 00:21:02 +09:00

136 lines
No EOL
4.4 KiB
C++

/*
* Copyright (c) 2021 - 2024 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tvgMath.h"
namespace tvg {
float atan2(float y, float x)
{
auto a = std::min(fabsf(x), fabsf(y)) / std::max(fabsf(x), fabsf(y));
auto s = a * a;
auto r = ((-0.0464964749f * s + 0.15931422f) * s - 0.327622764f) * s * a + a;
if (fabsf(y) > fabsf(x)) r = 1.57079637f - r;
if (x < 0) r = 3.14159274f - r;
if (y < 0) return -r;
return r;
}
bool inverse(const Matrix* m, Matrix* out)
{
auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) -
m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) +
m->e13 * (m->e21 * m->e32 - m->e22 * m->e31);
if (tvg::zero(det)) return false;
auto invDet = 1 / det;
out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet;
out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet;
out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet;
out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet;
out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet;
out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet;
out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet;
out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet;
out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet;
return true;
}
bool identity(const Matrix* m)
{
if (m->e11 != 1.0f || m->e12 != 0.0f || m->e13 != 0.0f ||
m->e21 != 0.0f || m->e22 != 1.0f || m->e23 != 0.0f ||
m->e31 != 0.0f || m->e32 != 0.0f || m->e33 != 1.0f) {
return false;
}
return true;
}
void rotate(Matrix* m, float degree)
{
if (degree == 0.0f) return;
auto radian = degree / 180.0f * MATH_PI;
auto cosVal = cosf(radian);
auto sinVal = sinf(radian);
m->e12 = m->e11 * -sinVal;
m->e11 *= cosVal;
m->e21 = m->e22 * sinVal;
m->e22 *= cosVal;
}
Matrix operator*(const Matrix& lhs, const Matrix& rhs)
{
Matrix m;
m.e11 = lhs.e11 * rhs.e11 + lhs.e12 * rhs.e21 + lhs.e13 * rhs.e31;
m.e12 = lhs.e11 * rhs.e12 + lhs.e12 * rhs.e22 + lhs.e13 * rhs.e32;
m.e13 = lhs.e11 * rhs.e13 + lhs.e12 * rhs.e23 + lhs.e13 * rhs.e33;
m.e21 = lhs.e21 * rhs.e11 + lhs.e22 * rhs.e21 + lhs.e23 * rhs.e31;
m.e22 = lhs.e21 * rhs.e12 + lhs.e22 * rhs.e22 + lhs.e23 * rhs.e32;
m.e23 = lhs.e21 * rhs.e13 + lhs.e22 * rhs.e23 + lhs.e23 * rhs.e33;
m.e31 = lhs.e31 * rhs.e11 + lhs.e32 * rhs.e21 + lhs.e33 * rhs.e31;
m.e32 = lhs.e31 * rhs.e12 + lhs.e32 * rhs.e22 + lhs.e33 * rhs.e32;
m.e33 = lhs.e31 * rhs.e13 + lhs.e32 * rhs.e23 + lhs.e33 * rhs.e33;
return m;
}
bool operator==(const Matrix& lhs, const Matrix& rhs)
{
if (!tvg::equal(lhs.e11, rhs.e11) || !tvg::equal(lhs.e12, rhs.e12) || !tvg::equal(lhs.e13, rhs.e13) ||
!tvg::equal(lhs.e21, rhs.e21) || !tvg::equal(lhs.e22, rhs.e22) || !tvg::equal(lhs.e23, rhs.e23) ||
!tvg::equal(lhs.e31, rhs.e31) || !tvg::equal(lhs.e32, rhs.e32) || !tvg::equal(lhs.e33, rhs.e33)) {
return false;
}
return true;
}
void operator*=(Point& pt, const Matrix& m)
{
auto tx = pt.x * m.e11 + pt.y * m.e12 + m.e13;
auto ty = pt.x * m.e21 + pt.y * m.e22 + m.e23;
pt.x = tx;
pt.y = ty;
}
Point operator*(const Point& pt, const Matrix& m)
{
auto tx = pt.x * m.e11 + pt.y * m.e12 + m.e13;
auto ty = pt.x * m.e21 + pt.y * m.e22 + m.e23;
return {tx, ty};
}
}