thorvg/src/renderer/sw_engine/tvgSwRasterAvx.h
Hermet Park 6fd7b87754
Some checks are pending
Android / build_x86_64 (push) Waiting to run
Android / build_aarch64 (push) Waiting to run
iOS / build_x86_64 (push) Waiting to run
iOS / build_arm64 (push) Waiting to run
macOS / build (push) Waiting to run
macOS / compact_test (push) Waiting to run
macOS / unit_test (push) Waiting to run
Ubuntu / build (push) Waiting to run
Ubuntu / compact_test (push) Waiting to run
Ubuntu / unit_test (push) Waiting to run
Windows / build (push) Waiting to run
Windows / compact_test (push) Waiting to run
Windows / unit_test (push) Waiting to run
sw_engine: clean code++
2025-06-03 00:58:29 +09:00

228 lines
8.4 KiB
C

/*
* Copyright (c) 2021 - 2025 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifdef THORVG_AVX_VECTOR_SUPPORT
#include <immintrin.h>
#define N_32BITS_IN_128REG 4
#define N_32BITS_IN_256REG 8
static inline __m128i ALPHA_BLEND(__m128i c, __m128i a)
{
//1. set the masks for the A/G and R/B channels
auto AG = _mm_set1_epi32(0xff00ff00);
auto RB = _mm_set1_epi32(0x00ff00ff);
//2. mask the alpha vector - originally quartet [a, a, a, a]
auto aAG = _mm_and_si128(a, AG);
auto aRB = _mm_and_si128(a, RB);
//3. calculate the alpha blending of the 2nd and 4th channel
//- mask the color vector
//- multiply it by the masked alpha vector
//- add the correction to compensate bit shifting used instead of dividing by 255
//- shift bits - corresponding to division by 256
auto even = _mm_and_si128(c, RB);
even = _mm_mullo_epi16(even, aRB);
even =_mm_add_epi16(even, RB);
even = _mm_srli_epi16(even, 8);
//4. calculate the alpha blending of the 1st and 3rd channel:
//- mask the color vector
//- multiply it by the corresponding masked alpha vector and store the high bits of the result
//- add the correction to compensate division by 256 instead of by 255 (next step)
//- remove the low 8 bits to mimic the division by 256
auto odd = _mm_and_si128(c, AG);
odd = _mm_mulhi_epu16(odd, aAG);
odd = _mm_add_epi16(odd, RB);
odd = _mm_and_si128(odd, AG);
//5. the final result
return _mm_or_si128(odd, even);
}
static void avxRasterGrayscale8(uint8_t* dst, uint8_t val, uint32_t offset, int32_t len)
{
dst += offset;
__m256i vecVal = _mm256_set1_epi8(val);
int32_t i = 0;
for (; i <= len - 32; i += 32) {
_mm256_storeu_si256((__m256i*)(dst + i), vecVal);
}
for (; i < len; ++i) {
dst[i] = val;
}
}
static void avxRasterPixel32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len)
{
//1. calculate how many iterations we need to cover the length
uint32_t iterations = len / N_32BITS_IN_256REG;
uint32_t avxFilled = iterations * N_32BITS_IN_256REG;
//2. set the beginning of the array
dst += offset;
//3. fill the octets
for (uint32_t i = 0; i < iterations; ++i, dst += N_32BITS_IN_256REG) {
_mm256_storeu_si256((__m256i*)dst, _mm256_set1_epi32(val));
}
//4. fill leftovers (in the first step we have to set the pointer to the place where the avx job is done)
int32_t leftovers = len - avxFilled;
while (leftovers--) *dst++ = val;
}
static bool avxRasterTranslucentRect(SwSurface* surface, const RenderRegion& bbox, const RenderColor& c)
{
auto h = bbox.h();
auto w = bbox.w();
//32bits channels
if (surface->channelSize == sizeof(uint32_t)) {
auto color = surface->join(c.r, c.g, c.b, c.a);
auto buffer = surface->buf32 + (bbox.min.y * surface->stride) + bbox.min.x;
uint32_t ialpha = 255 - c.a;
auto avxColor = _mm_set1_epi32(color);
auto avxIalpha = _mm_set1_epi8(ialpha);
for (uint32_t y = 0; y < h; ++y) {
auto dst = &buffer[y * surface->stride];
//1. fill the not aligned memory (for 128-bit registers a 16-bytes alignment is required)
auto notAligned = ((uintptr_t)dst & 0xf) / 4;
if (notAligned) {
notAligned = (N_32BITS_IN_128REG - notAligned > w ? w : N_32BITS_IN_128REG - notAligned);
for (uint32_t x = 0; x < notAligned; ++x, ++dst) {
*dst = color + ALPHA_BLEND(*dst, ialpha);
}
}
//2. fill the aligned memory - N_32BITS_IN_128REG pixels processed at once
uint32_t iterations = (w - notAligned) / N_32BITS_IN_128REG;
uint32_t avxFilled = iterations * N_32BITS_IN_128REG;
auto avxDst = (__m128i*)dst;
for (uint32_t x = 0; x < iterations; ++x, ++avxDst) {
*avxDst = _mm_add_epi32(avxColor, ALPHA_BLEND(*avxDst, avxIalpha));
}
//3. fill the remaining pixels
int32_t leftovers = w - notAligned - avxFilled;
dst += avxFilled;
while (leftovers--) {
*dst = color + ALPHA_BLEND(*dst, ialpha);
dst++;
}
}
//8bit grayscale
} else if (surface->channelSize == sizeof(uint8_t)) {
TVGLOG("SW_ENGINE", "Require AVX Optimization, Channel Size = %d", surface->channelSize);
auto buffer = surface->buf8 + (bbox.min.y * surface->stride) + bbox.min.x;
auto ialpha = ~c.a;
for (uint32_t y = 0; y < h; ++y) {
auto dst = &buffer[y * surface->stride];
for (uint32_t x = 0; x < w; ++x, ++dst) {
*dst = c.a + MULTIPLY(*dst, ialpha);
}
}
}
return true;
}
static bool avxRasterTranslucentRle(SwSurface* surface, const SwRle* rle, const RenderColor& c)
{
//32bit channels
if (surface->channelSize == sizeof(uint32_t)) {
auto color = surface->join(c.r, c.g, c.b, c.a);
uint32_t src;
ARRAY_FOREACH(span, rle->spans) {
auto dst = &surface->buf32[span->y * surface->stride + span->x];
if (span->coverage < 255) src = ALPHA_BLEND(color, span->coverage);
else src = color;
auto ialpha = IA(src);
//1. fill the not aligned memory (for 128-bit registers a 16-bytes alignment is required)
auto notAligned = ((uintptr_t)dst & 0xf) / 4;
if (notAligned) {
notAligned = (N_32BITS_IN_128REG - notAligned > span->len ? span->len : N_32BITS_IN_128REG - notAligned);
for (uint32_t x = 0; x < notAligned; ++x, ++dst) {
*dst = src + ALPHA_BLEND(*dst, ialpha);
}
}
//2. fill the aligned memory using avx - N_32BITS_IN_128REG pixels processed at once
//In order to avoid unnecessary avx variables declarations a check is made whether there are any iterations at all
uint32_t iterations = (span->len - notAligned) / N_32BITS_IN_128REG;
uint32_t avxFilled = 0;
if (iterations > 0) {
auto avxSrc = _mm_set1_epi32(src);
auto avxIalpha = _mm_set1_epi8(ialpha);
avxFilled = iterations * N_32BITS_IN_128REG;
auto avxDst = (__m128i*)dst;
for (uint32_t x = 0; x < iterations; ++x, ++avxDst) {
*avxDst = _mm_add_epi32(avxSrc, ALPHA_BLEND(*avxDst, avxIalpha));
}
}
//3. fill the remaining pixels
int32_t leftovers = span->len - notAligned - avxFilled;
dst += avxFilled;
while (leftovers--) {
*dst = src + ALPHA_BLEND(*dst, ialpha);
dst++;
}
++span;
}
//8bit grayscale
} else if (surface->channelSize == sizeof(uint8_t)) {
TVGLOG("SW_ENGINE", "Require AVX Optimization, Channel Size = %d", surface->channelSize);
uint8_t src;
ARRAY_FOREACH(span, rle->spans) {
auto dst = &surface->buf8[span->y * surface->stride + span->x];
if (span->coverage < 255) src = MULTIPLY(span->coverage, c.a);
else src = c.a;
auto ialpha = ~c.a;
for (uint32_t x = 0; x < span->len; ++x, ++dst) {
*dst = src + MULTIPLY(*dst, ialpha);
}
}
}
return true;
}
#endif