thorvg/src/lib/sw_engine/tvgSwRasterTexmap.h
Hermet Park 84012651cc common engine: code refactoring
Introduce the RenderMesh structure to reduce the number of required parameters.
2023-04-27 10:16:12 +09:00

647 lines
23 KiB
C

/*
* Copyright (c) 2021 - 2023 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
struct AALine
{
int32_t x[2];
int32_t coverage[2];
int32_t length[2];
};
struct AASpans
{
AALine *lines;
int32_t yStart;
int32_t yEnd;
};
static inline void _swap(float& a, float& b, float& tmp)
{
tmp = a;
a = b;
b = tmp;
}
//Careful! Shared resource, No support threading
static float dudx, dvdx;
static float dxdya, dxdyb, dudya, dvdya;
static float xa, xb, ua, va;
//Y Range exception handling
static bool _arrange(const SwImage* image, const SwBBox* region, int& yStart, int& yEnd)
{
int32_t regionTop, regionBottom;
if (region) {
regionTop = region->min.y;
regionBottom = region->max.y;
} else {
regionTop = image->rle->spans->y;
regionBottom = image->rle->spans[image->rle->size - 1].y;
}
if (yStart >= regionBottom) return false;
if (yStart < regionTop) yStart = regionTop;
if (yEnd > regionBottom) yEnd = regionBottom;
return true;
}
static void _rasterPolygonImageSegment(SwSurface* surface, const SwImage* image, const SwBBox* region, int yStart, int yEnd, uint32_t opacity, uint32_t (*blendMethod)(uint32_t), AASpans* aaSpans)
{
#define TEXMAP_TRANSLUCENT
#define TEXMAP_MASKING
#include "tvgSwRasterTexmapInternal.h"
#undef TEXMAP_MASKING
#undef TEXMAP_TRANSLUCENT
}
static void _rasterPolygonImageSegment(SwSurface* surface, const SwImage* image, const SwBBox* region, int yStart, int yEnd, uint32_t (*blendMethod)(uint32_t), AASpans* aaSpans)
{
#define TEXMAP_MASKING
#include "tvgSwRasterTexmapInternal.h"
#undef TEXMAP_MASKING
}
static void _rasterPolygonImageSegment(SwSurface* surface, const SwImage* image, const SwBBox* region, int yStart, int yEnd, uint32_t opacity, AASpans* aaSpans)
{
#define TEXMAP_TRANSLUCENT
#include "tvgSwRasterTexmapInternal.h"
#undef TEXMAP_TRANSLUCENT
}
static void _rasterPolygonImageSegment(SwSurface* surface, const SwImage* image, const SwBBox* region, int yStart, int yEnd, AASpans* aaSpans)
{
#include "tvgSwRasterTexmapInternal.h"
}
/* This mapping algorithm is based on Mikael Kalms's. */
static void _rasterPolygonImage(SwSurface* surface, const SwImage* image, const SwBBox* region, uint32_t opacity, Polygon& polygon, uint32_t (*blendMethod)(uint32_t), AASpans* aaSpans)
{
float x[3] = {polygon.vertex[0].pt.x, polygon.vertex[1].pt.x, polygon.vertex[2].pt.x};
float y[3] = {polygon.vertex[0].pt.y, polygon.vertex[1].pt.y, polygon.vertex[2].pt.y};
float u[3] = {polygon.vertex[0].uv.x, polygon.vertex[1].uv.x, polygon.vertex[2].uv.x};
float v[3] = {polygon.vertex[0].uv.y, polygon.vertex[1].uv.y, polygon.vertex[2].uv.y};
float off_y;
float dxdy[3] = {0.0f, 0.0f, 0.0f};
float tmp;
auto upper = false;
//Sort the vertices in ascending Y order
if (y[0] > y[1]) {
_swap(x[0], x[1], tmp);
_swap(y[0], y[1], tmp);
_swap(u[0], u[1], tmp);
_swap(v[0], v[1], tmp);
}
if (y[0] > y[2]) {
_swap(x[0], x[2], tmp);
_swap(y[0], y[2], tmp);
_swap(u[0], u[2], tmp);
_swap(v[0], v[2], tmp);
}
if (y[1] > y[2]) {
_swap(x[1], x[2], tmp);
_swap(y[1], y[2], tmp);
_swap(u[1], u[2], tmp);
_swap(v[1], v[2], tmp);
}
//Y indexes
int yi[3] = {(int)y[0], (int)y[1], (int)y[2]};
//Skip drawing if it's too thin to cover any pixels at all.
if ((yi[0] == yi[1] && yi[0] == yi[2]) || ((int) x[0] == (int) x[1] && (int) x[0] == (int) x[2])) return;
//Calculate horizontal and vertical increments for UV axes (these calcs are certainly not optimal, although they're stable (handles any dy being 0)
auto denom = ((x[2] - x[0]) * (y[1] - y[0]) - (x[1] - x[0]) * (y[2] - y[0]));
//Skip poly if it's an infinitely thin line
if (mathZero(denom)) return;
denom = 1 / denom; //Reciprocal for speeding up
dudx = ((u[2] - u[0]) * (y[1] - y[0]) - (u[1] - u[0]) * (y[2] - y[0])) * denom;
dvdx = ((v[2] - v[0]) * (y[1] - y[0]) - (v[1] - v[0]) * (y[2] - y[0])) * denom;
auto dudy = ((u[1] - u[0]) * (x[2] - x[0]) - (u[2] - u[0]) * (x[1] - x[0])) * denom;
auto dvdy = ((v[1] - v[0]) * (x[2] - x[0]) - (v[2] - v[0]) * (x[1] - x[0])) * denom;
//Calculate X-slopes along the edges
if (y[1] > y[0]) dxdy[0] = (x[1] - x[0]) / (y[1] - y[0]);
if (y[2] > y[0]) dxdy[1] = (x[2] - x[0]) / (y[2] - y[0]);
if (y[2] > y[1]) dxdy[2] = (x[2] - x[1]) / (y[2] - y[1]);
//Determine which side of the polygon the longer edge is on
auto side = (dxdy[1] > dxdy[0]) ? true : false;
if (mathEqual(y[0], y[1])) side = x[0] > x[1];
if (mathEqual(y[1], y[2])) side = x[2] > x[1];
auto regionTop = region ? region->min.y : image->rle->spans->y; //Normal Image or Rle Image?
//Longer edge is on the left side
if (!side) {
//Calculate slopes along left edge
dxdya = dxdy[1];
dudya = dxdya * dudx + dudy;
dvdya = dxdya * dvdx + dvdy;
//Perform subpixel pre-stepping along left edge
auto dy = 1.0f - (y[0] - yi[0]);
xa = x[0] + dy * dxdya;
ua = u[0] + dy * dudya;
va = v[0] + dy * dvdya;
//Draw upper segment if possibly visible
if (yi[0] < yi[1]) {
off_y = y[0] < regionTop ? (regionTop - y[0]) : 0;
xa += (off_y * dxdya);
ua += (off_y * dudya);
va += (off_y * dvdya);
// Set right edge X-slope and perform subpixel pre-stepping
dxdyb = dxdy[0];
xb = x[0] + dy * dxdyb + (off_y * dxdyb);
if (blendMethod) {
if (opacity == 255) _rasterPolygonImageSegment(surface, image, region, yi[0], yi[1], blendMethod, aaSpans);
else _rasterPolygonImageSegment(surface, image, region, yi[0], yi[1], opacity, blendMethod, aaSpans);
} else {
if (opacity == 255) _rasterPolygonImageSegment(surface, image, region, yi[0], yi[1], aaSpans);
else _rasterPolygonImageSegment(surface, image, region, yi[0], yi[1], opacity, aaSpans);
}
upper = true;
}
//Draw lower segment if possibly visible
if (yi[1] < yi[2]) {
off_y = y[1] < regionTop ? (regionTop - y[1]) : 0;
if (!upper) {
xa += (off_y * dxdya);
ua += (off_y * dudya);
va += (off_y * dvdya);
}
// Set right edge X-slope and perform subpixel pre-stepping
dxdyb = dxdy[2];
xb = x[1] + (1 - (y[1] - yi[1])) * dxdyb + (off_y * dxdyb);
if (blendMethod) {
if (opacity == 255) _rasterPolygonImageSegment(surface, image, region, yi[1], yi[2], blendMethod, aaSpans);
else _rasterPolygonImageSegment(surface, image, region, yi[1], yi[2], opacity, blendMethod, aaSpans);
} else {
if (opacity == 255) _rasterPolygonImageSegment(surface, image, region, yi[1], yi[2], aaSpans);
else _rasterPolygonImageSegment(surface, image, region, yi[1], yi[2], opacity, aaSpans);
}
}
//Longer edge is on the right side
} else {
//Set right edge X-slope and perform subpixel pre-stepping
dxdyb = dxdy[1];
auto dy = 1.0f - (y[0] - yi[0]);
xb = x[0] + dy * dxdyb;
//Draw upper segment if possibly visible
if (yi[0] < yi[1]) {
off_y = y[0] < regionTop ? (regionTop - y[0]) : 0;
xb += (off_y *dxdyb);
// Set slopes along left edge and perform subpixel pre-stepping
dxdya = dxdy[0];
dudya = dxdya * dudx + dudy;
dvdya = dxdya * dvdx + dvdy;
xa = x[0] + dy * dxdya + (off_y * dxdya);
ua = u[0] + dy * dudya + (off_y * dudya);
va = v[0] + dy * dvdya + (off_y * dvdya);
if (blendMethod) {
if (opacity == 255) _rasterPolygonImageSegment(surface, image, region, yi[0], yi[1], blendMethod, aaSpans);
else _rasterPolygonImageSegment(surface, image, region, yi[0], yi[1], opacity, blendMethod, aaSpans);
} else {
if (opacity == 255) _rasterPolygonImageSegment(surface, image, region, yi[0], yi[1], aaSpans);
else _rasterPolygonImageSegment(surface, image, region, yi[0], yi[1], opacity, aaSpans);
}
upper = true;
}
//Draw lower segment if possibly visible
if (yi[1] < yi[2]) {
off_y = y[1] < regionTop ? (regionTop - y[1]) : 0;
if (!upper) xb += (off_y *dxdyb);
// Set slopes along left edge and perform subpixel pre-stepping
dxdya = dxdy[2];
dudya = dxdya * dudx + dudy;
dvdya = dxdya * dvdx + dvdy;
dy = 1 - (y[1] - yi[1]);
xa = x[1] + dy * dxdya + (off_y * dxdya);
ua = u[1] + dy * dudya + (off_y * dudya);
va = v[1] + dy * dvdya + (off_y * dvdya);
if (blendMethod) {
if (opacity == 255) _rasterPolygonImageSegment(surface, image, region, yi[1], yi[2], blendMethod, aaSpans);
else _rasterPolygonImageSegment(surface, image, region, yi[1], yi[2], opacity, blendMethod, aaSpans);
} else {
if (opacity == 255) _rasterPolygonImageSegment(surface, image, region, yi[1], yi[2], aaSpans);
else _rasterPolygonImageSegment(surface, image, region, yi[1], yi[2], opacity, aaSpans);
}
}
}
}
static AASpans* _AASpans(float ymin, float ymax, const SwImage* image, const SwBBox* region)
{
auto yStart = static_cast<int32_t>(ymin);
auto yEnd = static_cast<int32_t>(ymax);
if (!_arrange(image, region, yStart, yEnd)) return nullptr;
auto aaSpans = static_cast<AASpans*>(malloc(sizeof(AASpans)));
aaSpans->yStart = yStart;
aaSpans->yEnd = yEnd;
//Initialize X range
auto height = yEnd - yStart;
aaSpans->lines = static_cast<AALine*>(calloc(height, sizeof(AALine)));
for (int32_t i = 0; i < height; i++) {
aaSpans->lines[i].x[0] = INT32_MAX;
aaSpans->lines[i].x[1] = INT32_MIN;
}
return aaSpans;
}
static void _calcIrregularCoverage(AALine* lines, int32_t eidx, int32_t y, int32_t diagonal, int32_t edgeDist, bool reverse)
{
if (eidx == 1) reverse = !reverse;
int32_t coverage = (255 / (diagonal + 2));
int32_t tmp;
for (int32_t ry = 0; ry < (diagonal + 2); ry++) {
tmp = y - ry - edgeDist;
if (tmp < 0) return;
lines[tmp].length[eidx] = 1;
if (reverse) lines[tmp].coverage[eidx] = 255 - (coverage * ry);
else lines[tmp].coverage[eidx] = (coverage * ry);
}
}
static void _calcVertCoverage(AALine *lines, int32_t eidx, int32_t y, int32_t rewind, bool reverse)
{
if (eidx == 1) reverse = !reverse;
int32_t coverage = (255 / (rewind + 1));
int32_t tmp;
for (int ry = 1; ry < (rewind + 1); ry++) {
tmp = y - ry;
if (tmp < 0) return;
lines[tmp].length[eidx] = 1;
if (reverse) lines[tmp].coverage[eidx] = (255 - (coverage * ry));
else lines[tmp].coverage[eidx] = (coverage * ry);
}
}
static void _calcHorizCoverage(AALine *lines, int32_t eidx, int32_t y, int32_t x, int32_t x2)
{
if (lines[y].length[eidx] < abs(x - x2)) {
lines[y].length[eidx] = abs(x - x2);
lines[y].coverage[eidx] = (255 / (lines[y].length[eidx] + 1));
}
}
/*
* This Anti-Aliasing mechanism is originated from Hermet Park's idea.
* To understand this AA logic, you can refer this page:
* www.hermet.pe.kr/122 (hermetpark@gmail.com)
*/
static void _calcAAEdge(AASpans *aaSpans, int32_t eidx)
{
//Previous edge direction:
#define DirOutHor 0x0011
#define DirOutVer 0x0001
#define DirInHor 0x0010
#define DirInVer 0x0000
#define DirNone 0x1000
#define PUSH_VERTEX() \
do { \
pEdge.x = lines[y].x[eidx]; \
pEdge.y = y; \
ptx[0] = tx[0]; \
ptx[1] = tx[1]; \
} while (0)
int32_t y = 0;
SwPoint pEdge = {-1, -1}; //previous edge point
SwPoint edgeDiff = {0, 0}; //temporary used for point distance
/* store bigger to tx[0] between prev and current edge's x positions. */
int32_t tx[2] = {0, 0};
/* back up prev tx values */
int32_t ptx[2] = {0, 0};
int32_t diagonal = 0; //straight diagonal pixels count
auto yStart = aaSpans->yStart;
auto yEnd = aaSpans->yEnd;
auto lines = aaSpans->lines;
int32_t prevDir = DirNone;
int32_t curDir = DirNone;
yEnd -= yStart;
//Start Edge
if (y < yEnd) {
pEdge.x = lines[y].x[eidx];
pEdge.y = y;
}
//Calculates AA Edges
for (y++; y < yEnd; y++) {
//Ready tx
if (eidx == 0) {
tx[0] = pEdge.x;
tx[1] = lines[y].x[0];
} else {
tx[0] = lines[y].x[1];
tx[1] = pEdge.x;
}
edgeDiff.x = (tx[0] - tx[1]);
edgeDiff.y = (y - pEdge.y);
//Confirm current edge direction
if (edgeDiff.x > 0) {
if (edgeDiff.y == 1) curDir = DirOutHor;
else curDir = DirOutVer;
} else if (edgeDiff.x < 0) {
if (edgeDiff.y == 1) curDir = DirInHor;
else curDir = DirInVer;
} else curDir = DirNone;
//straight diagonal increase
if ((curDir == prevDir) && (y < yEnd)) {
if ((abs(edgeDiff.x) == 1) && (edgeDiff.y == 1)) {
++diagonal;
PUSH_VERTEX();
continue;
}
}
switch (curDir) {
case DirOutHor: {
_calcHorizCoverage(lines, eidx, y, tx[0], tx[1]);
if (diagonal > 0) {
_calcIrregularCoverage(lines, eidx, y, diagonal, 0, true);
diagonal = 0;
}
/* Increment direction is changed: Outside Vertical -> Outside Horizontal */
if (prevDir == DirOutVer) _calcHorizCoverage(lines, eidx, pEdge.y, ptx[0], ptx[1]);
//Trick, but fine-tunning!
if (y == 1) _calcHorizCoverage(lines, eidx, pEdge.y, tx[0], tx[1]);
PUSH_VERTEX();
}
break;
case DirOutVer: {
_calcVertCoverage(lines, eidx, y, edgeDiff.y, true);
if (diagonal > 0) {
_calcIrregularCoverage(lines, eidx, y, diagonal, edgeDiff.y, false);
diagonal = 0;
}
/* Increment direction is changed: Outside Horizontal -> Outside Vertical */
if (prevDir == DirOutHor) _calcHorizCoverage(lines, eidx, pEdge.y, ptx[0], ptx[1]);
PUSH_VERTEX();
}
break;
case DirInHor: {
_calcHorizCoverage(lines, eidx, (y - 1), tx[0], tx[1]);
if (diagonal > 0) {
_calcIrregularCoverage(lines, eidx, y, diagonal, 0, false);
diagonal = 0;
}
/* Increment direction is changed: Outside Horizontal -> Inside Horizontal */
if (prevDir == DirOutHor) _calcHorizCoverage(lines, eidx, pEdge.y, ptx[0], ptx[1]);
PUSH_VERTEX();
}
break;
case DirInVer: {
_calcVertCoverage(lines, eidx, y, edgeDiff.y, false);
if (prevDir == DirOutHor) edgeDiff.y -= 1; //Weird, fine tuning?????????????????????
if (diagonal > 0) {
_calcIrregularCoverage(lines, eidx, y, diagonal, edgeDiff.y, true);
diagonal = 0;
}
/* Increment direction is changed: Outside Horizontal -> Inside Vertical */
if (prevDir == DirOutHor) _calcHorizCoverage(lines, eidx, pEdge.y, ptx[0], ptx[1]);
PUSH_VERTEX();
}
break;
}
if (curDir != DirNone) prevDir = curDir;
}
//leftovers...?
if ((edgeDiff.y == 1) && (edgeDiff.x != 0)) {
if (y >= yEnd) y = (yEnd - 1);
_calcHorizCoverage(lines, eidx, y - 1, ptx[0], ptx[1]);
_calcHorizCoverage(lines, eidx, y, tx[0], tx[1]);
} else {
++y;
if (y > yEnd) y = yEnd;
_calcVertCoverage(lines, eidx, y, (edgeDiff.y + 1), (prevDir & 0x00000001));
}
}
static bool _apply(SwSurface* surface, AASpans* aaSpans)
{
auto y = aaSpans->yStart;
uint32_t pixel;
uint32_t* dst;
int32_t pos;
//left side
_calcAAEdge(aaSpans, 0);
//right side
_calcAAEdge(aaSpans, 1);
while (y < aaSpans->yEnd) {
auto line = &aaSpans->lines[y - aaSpans->yStart];
auto width = line->x[1] - line->x[0];
if (width > 0) {
auto offset = y * surface->stride;
//Left edge
dst = surface->buffer + (offset + line->x[0]);
if (line->x[0] > 1) pixel = *(dst - 1);
else pixel = *dst;
pos = 1;
while (pos <= line->length[0]) {
*dst = INTERPOLATE((line->coverage[0] * pos), *dst, pixel);
++dst;
++pos;
}
//Right edge
dst = surface->buffer + (offset + line->x[1] - 1);
if (line->x[1] < (int32_t)(surface->w - 1)) pixel = *(dst + 1);
else pixel = *dst;
pos = width;
while ((int32_t)(width - line->length[1]) < pos) {
*dst = INTERPOLATE(255 - (line->coverage[1] * (line->length[1] - (width - pos))), *dst, pixel);
--dst;
--pos;
}
}
y++;
}
free(aaSpans->lines);
free(aaSpans);
return true;
}
/*
2 triangles constructs 1 mesh.
below figure illustrates vert[4] index info.
If you need better quality, please divide a mesh by more number of triangles.
0 -- 1
| / |
| / |
3 -- 2
*/
static bool _rasterTexmapPolygon(SwSurface* surface, const SwImage* image, const Matrix* transform, const SwBBox* region, uint32_t opacity, uint32_t (*blendMethod)(uint32_t))
{
//Exceptions: No dedicated drawing area?
if ((!image->rle && !region) || (image->rle && image->rle->size == 0)) return false;
/* Prepare vertices.
shift XY coordinates to match the sub-pixeling technique. */
Vertex vertices[4];
vertices[0] = {{0.0f, 0.0f}, {0.0f, 0.0f}};
vertices[1] = {{float(image->w), 0.0f}, {float(image->w), 0.0f}};
vertices[2] = {{float(image->w), float(image->h)}, {float(image->w), float(image->h)}};
vertices[3] = {{0.0f, float(image->h)}, {0.0f, float(image->h)}};
float ys = FLT_MAX, ye = -1.0f;
for (int i = 0; i < 4; i++) {
mathMultiply(&vertices[i].pt, transform);
if (vertices[i].pt.y < ys) ys = vertices[i].pt.y;
if (vertices[i].pt.y > ye) ye = vertices[i].pt.y;
}
auto aaSpans = _AASpans(ys, ye, image, region);
if (!aaSpans) return true;
Polygon polygon;
//Draw the first polygon
polygon.vertex[0] = vertices[0];
polygon.vertex[1] = vertices[1];
polygon.vertex[2] = vertices[3];
_rasterPolygonImage(surface, image, region, opacity, polygon, blendMethod, aaSpans);
//Draw the second polygon
polygon.vertex[0] = vertices[1];
polygon.vertex[1] = vertices[2];
polygon.vertex[2] = vertices[3];
_rasterPolygonImage(surface, image, region, opacity, polygon, blendMethod, aaSpans);
return _apply(surface, aaSpans);
}
/*
Provide any number of triangles to draw a mesh using the supplied image.
Indexes are not used, so each triangle (Polygon) vertex has to be defined, even if they copy the previous one.
Example:
0 -- 1 0 -- 1 0
| / | --> | / / |
| / | | / / |
2 -- 3 2 1 -- 2
Should provide two Polygons, one for each triangle.
// TODO: region?
*/
static bool _rasterTexmapPolygonMesh(SwSurface* surface, const SwImage* image, const RenderMesh* mesh, const Matrix* transform, const SwBBox* region, uint32_t opacity, uint32_t (*blendMethod)(uint32_t))
{
//Exceptions: No dedicated drawing area?
if ((!image->rle && !region) || (image->rle && image->rle->size == 0)) return false;
// Step polygons once to transform
auto transformedTris = (Polygon*)malloc(sizeof(Polygon) * mesh->triangleCnt);
float ys = FLT_MAX, ye = -1.0f;
for (uint32_t i = 0; i < mesh->triangleCnt; i++) {
transformedTris[i] = mesh->triangles[i];
mathMultiply(&transformedTris[i].vertex[0].pt, transform);
mathMultiply(&transformedTris[i].vertex[1].pt, transform);
mathMultiply(&transformedTris[i].vertex[2].pt, transform);
if (transformedTris[i].vertex[0].pt.y < ys) ys = transformedTris[i].vertex[0].pt.y;
else if (transformedTris[i].vertex[0].pt.y > ye) ye = transformedTris[i].vertex[0].pt.y;
if (transformedTris[i].vertex[1].pt.y < ys) ys = transformedTris[i].vertex[1].pt.y;
else if (transformedTris[i].vertex[1].pt.y > ye) ye = transformedTris[i].vertex[1].pt.y;
if (transformedTris[i].vertex[2].pt.y < ys) ys = transformedTris[i].vertex[2].pt.y;
else if (transformedTris[i].vertex[2].pt.y > ye) ye = transformedTris[i].vertex[2].pt.y;
// Convert normalized UV coordinates to image coordinates
transformedTris[i].vertex[0].uv.x *= (float)image->w;
transformedTris[i].vertex[0].uv.y *= (float)image->h;
transformedTris[i].vertex[1].uv.x *= (float)image->w;
transformedTris[i].vertex[1].uv.y *= (float)image->h;
transformedTris[i].vertex[2].uv.x *= (float)image->w;
transformedTris[i].vertex[2].uv.y *= (float)image->h;
}
// Get AA spans and step polygons again to draw
auto aaSpans = _AASpans(ys, ye, image, region);
if (aaSpans) {
for (uint32_t i = 0; i < mesh->triangleCnt; i++) {
_rasterPolygonImage(surface, image, region, opacity, transformedTris[i], blendMethod, aaSpans);
}
// Apply to surface (note: frees the AA spans)
_apply(surface, aaSpans);
}
free(transformedTris);
return true;
}