mirror of
https://github.com/thorvg/thorvg.git
synced 2025-06-08 05:33:36 +00:00

The sw_engine, when determining the outline, converts floats to ints by multiplying them x64, resulting in a comparison precision of 1/64 = 0.015625. Both gl_engine and wg_engine operate on floats. Before adding a closing point to a shape, they performed a comparison to check if the point differed from the starting point: - wg: with a precision of 1e-3 (using length2, i.e., eps = 1e-6 - gl: used direct == comparison. Now, consistency has been ensured by introducing a comparison precision of 1/64 in both wg_engine and gl_engine. @issue: https://github.com/thorvg/thorvg/issues/2799 @issue: https://github.com/thorvg/thorvg/issues/3235
546 lines
No EOL
18 KiB
C++
Executable file
546 lines
No EOL
18 KiB
C++
Executable file
/*
|
|
* Copyright (c) 2023 - 2025 the ThorVG project. All rights reserved.
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#ifndef _TVG_WG_GEOMETRY_H_
|
|
#define _TVG_WG_GEOMETRY_H_
|
|
|
|
#include <cassert>
|
|
#include "tvgMath.h"
|
|
#include "tvgRender.h"
|
|
|
|
|
|
// default size of vertex and index buffers
|
|
#define WG_DEFAULT_BUFFER_SIZE 2048
|
|
|
|
struct WgVertexBuffer;
|
|
struct WgIndexedVertexBuffer;
|
|
|
|
struct WgGeometryBufferPool
|
|
{
|
|
private:
|
|
Array<WgVertexBuffer*> vbuffers;
|
|
Array<WgIndexedVertexBuffer*> ibuffers;
|
|
|
|
public:
|
|
~WgGeometryBufferPool();
|
|
|
|
WgVertexBuffer* reqVertexBuffer(float scale = 1.0f);
|
|
WgIndexedVertexBuffer* reqIndexedVertexBuffer(float scale = 1.0f);
|
|
void retVertexBuffer(WgVertexBuffer* buffer);
|
|
void retIndexedVertexBuffer(WgIndexedVertexBuffer* buffer);
|
|
|
|
static WgGeometryBufferPool* instance(); //return the shared buffer pool
|
|
};
|
|
|
|
|
|
// simple vertex buffer
|
|
struct WgVertexBuffer
|
|
{
|
|
Point* data; // vertex buffer
|
|
struct Distance {
|
|
float interval; // distance to previous point
|
|
float length; // distance to the first point through all previous points
|
|
} *dist;
|
|
uint32_t count = 0;
|
|
uint32_t reserved = WG_DEFAULT_BUFFER_SIZE;
|
|
float scale; // tesselation scale
|
|
bool closed = false;
|
|
|
|
// callback for external process of polyline
|
|
using onPolylineFn = std::function<void(const WgVertexBuffer& buff)>;
|
|
|
|
WgVertexBuffer(float scale = 1.0f) : scale(scale)
|
|
{
|
|
data = (Point*)malloc(sizeof(Point) * reserved);
|
|
dist = (Distance*)malloc(sizeof(Distance) * reserved);
|
|
}
|
|
|
|
~WgVertexBuffer()
|
|
{
|
|
free(data);
|
|
free(dist);
|
|
}
|
|
|
|
// reset buffer
|
|
void reset(float scale)
|
|
{
|
|
count = 0;
|
|
closed = false;
|
|
this->scale = scale;
|
|
}
|
|
|
|
// get the last point with optional index offset from the end
|
|
Point last(size_t offset = 0) const
|
|
{
|
|
return data[count - offset - 1];
|
|
}
|
|
|
|
// get the last distance with optional index offset from the end
|
|
float lastDist(size_t offset = 0) const
|
|
{
|
|
return dist[count - offset - 1].interval;
|
|
}
|
|
|
|
// get total length
|
|
float total() const
|
|
{
|
|
return (count == 0) ? 0.0f : dist[count-1].length;
|
|
}
|
|
|
|
// get next vertex index by length using binary search
|
|
size_t getIndexByLength(float len) const
|
|
{
|
|
if (count <= 1) return 0;
|
|
size_t left = 0;
|
|
size_t right = count - 1;
|
|
while (left <= right) {
|
|
size_t mid = left + (right - left) / 2;
|
|
if (dist[mid].length == len) return mid;
|
|
else if (dist[mid].length < len) left = mid + 1;
|
|
else right = mid - 1;
|
|
}
|
|
return right + 1;
|
|
}
|
|
|
|
// get min and max values of the buffer
|
|
void getMinMax(Point& pmin, Point& pmax) const
|
|
{
|
|
if (count == 0) return;
|
|
pmax = pmin = data[0];
|
|
for (size_t i = 1; i < count; i++) {
|
|
pmin = min(pmin, data[i]);
|
|
pmax = max(pmax, data[i]);
|
|
}
|
|
}
|
|
|
|
// update points distancess to the prev point and total length
|
|
void updateDistances()
|
|
{
|
|
if (count == 0) return;
|
|
dist[0].interval = 0.0f;
|
|
dist[0].length = 0.0f;
|
|
for (size_t i = 1; i < count; i++) {
|
|
dist[i].interval = tvg::length(data[i-1] - data[i]);
|
|
dist[i].length = dist[i-1].length + dist[i].interval;
|
|
}
|
|
}
|
|
|
|
// close vertex buffer
|
|
void close()
|
|
{
|
|
// check if last point is not to close to the first point
|
|
if (length(data[0] - last()) > 0.015625f) {
|
|
append(data[0]);
|
|
}
|
|
closed = true;
|
|
}
|
|
|
|
// append point
|
|
void append(const Point& p)
|
|
{
|
|
if (count >= reserved) {
|
|
reserved *= 2;
|
|
data = (Point*) realloc(data, reserved * sizeof(Point));
|
|
dist = (Distance*) realloc(dist, reserved * sizeof(Distance));
|
|
}
|
|
data[count++] = p;
|
|
}
|
|
|
|
// append source vertex buffer in index range from start to end (end not included)
|
|
void appendRange(const WgVertexBuffer& buff, size_t start_index, size_t end_index)
|
|
{
|
|
for (size_t i = start_index; i < end_index; i++) {
|
|
append(buff.data[i]);
|
|
}
|
|
}
|
|
|
|
// append circle (list of triangles)
|
|
void appendCircle(float radius)
|
|
{
|
|
// get approx circle length
|
|
float clen = 2.0f * radius * MATH_PI;
|
|
size_t nsegs = std::max((uint32_t)(clen * scale / 8), 16U);
|
|
// append circle^
|
|
Point prev { std::sin(0.0f) * radius, std::cos(0.0f) * radius };
|
|
for (size_t i = 1; i <= nsegs; i++) {
|
|
float t = (2.0f * MATH_PI * i) / nsegs;
|
|
Point curr { std::sin(t) * radius, std::cos(t) * radius };
|
|
append(Point{0.0f, 0.0f});
|
|
append(prev);
|
|
append(curr);
|
|
prev = curr;
|
|
}
|
|
}
|
|
|
|
// append cubic spline
|
|
void appendCubic(const Point& v0, const Point& v1, const Point& v2, const Point& v3)
|
|
{
|
|
// get approx cubic length
|
|
float clen = (tvg::length(v0 - v1) + tvg::length(v1 - v2) + tvg::length(v2 - v3));
|
|
size_t nsegs = std::max((uint32_t)(clen * scale / 16), 16U);
|
|
// append cubic
|
|
Bezier bezier{v0, v1, v2, v3};
|
|
for (size_t i = 1; i <= nsegs; i++) {
|
|
append(bezier.at((float)i / nsegs));
|
|
}
|
|
}
|
|
|
|
// decode path with callback for external prcesses
|
|
void decodePath(const RenderShape& rshape, bool update_dist, onPolylineFn onPolyline, bool trim = false)
|
|
{
|
|
// decode path
|
|
reset(scale);
|
|
|
|
PathCommand *cmds, *trimmedCmds = nullptr;
|
|
Point *pts, *trimmedPts = nullptr;
|
|
uint32_t cmdCnt{};
|
|
|
|
if (trim) {
|
|
RenderPath trimmedPath;
|
|
if (!rshape.stroke->trim.trim(rshape.path, trimmedPath)) return;
|
|
|
|
cmds = trimmedCmds = trimmedPath.cmds.data;
|
|
cmdCnt = trimmedPath.cmds.count;
|
|
pts = trimmedPts = trimmedPath.pts.data;
|
|
|
|
trimmedPath.cmds.data = nullptr;
|
|
trimmedPath.pts.data = nullptr;
|
|
} else {
|
|
cmds = rshape.path.cmds.data;
|
|
cmdCnt = rshape.path.cmds.count;
|
|
pts = rshape.path.pts.data;
|
|
}
|
|
|
|
size_t pntIndex = 0;
|
|
for (uint32_t i = 0; i < cmdCnt; i++) {
|
|
auto& cmd = cmds[i];
|
|
if (cmd == PathCommand::MoveTo) {
|
|
// after path decoding we need to update distances and total length
|
|
if (update_dist) updateDistances();
|
|
if ((onPolyline) && (count > 0)) onPolyline(*this);
|
|
reset(scale);
|
|
append(pts[pntIndex]);
|
|
pntIndex++;
|
|
} else if (cmd == PathCommand::LineTo) {
|
|
append(pts[pntIndex]);
|
|
pntIndex++;
|
|
} else if (cmd == PathCommand::Close) {
|
|
close();
|
|
// proceed path if close command is not the last command and next command is LineTo or CubicTo
|
|
if (i + 1 < cmdCnt && (cmds[i + 1] == PathCommand::LineTo || cmds[i + 1] == PathCommand::CubicTo)) {
|
|
// proceed current path
|
|
if (update_dist) updateDistances();
|
|
if ((count > 0) && (onPolyline)) onPolyline(*this);
|
|
// append closing point of current path as a first point of the new path
|
|
Point last_pt = last();
|
|
reset(scale);
|
|
append(last_pt);
|
|
}
|
|
} else if (cmd == PathCommand::CubicTo) {
|
|
// append tesselated cubic spline with scale param
|
|
appendCubic(data[count - 1], pts[pntIndex + 0], pts[pntIndex + 1], pts[pntIndex + 2]);
|
|
pntIndex += 3;
|
|
}
|
|
}
|
|
|
|
free(trimmedCmds);
|
|
free(trimmedPts);
|
|
|
|
// after path decoding we need to update distances and total length
|
|
if (update_dist) updateDistances();
|
|
if ((count > 0) && (onPolyline)) onPolyline(*this);
|
|
reset(scale);
|
|
}
|
|
};
|
|
|
|
|
|
struct WgIndexedVertexBuffer
|
|
{
|
|
Point* vbuff;
|
|
uint32_t* ibuff;
|
|
uint32_t vcount = 0, icount = 0;
|
|
size_t vreserved = WG_DEFAULT_BUFFER_SIZE;
|
|
size_t ireserved = WG_DEFAULT_BUFFER_SIZE * 2;
|
|
WgGeometryBufferPool* pool;
|
|
WgVertexBuffer* dashed; // intermediate buffer for stroke dashing
|
|
float scale;
|
|
|
|
WgIndexedVertexBuffer(WgGeometryBufferPool* pool, float scale = 1.0f) : pool(pool), scale(scale)
|
|
{
|
|
vbuff = (Point*)malloc(sizeof(Point) * vreserved);
|
|
ibuff = (uint32_t*)malloc(sizeof(uint32_t) * ireserved);
|
|
dashed = pool->reqVertexBuffer();
|
|
}
|
|
|
|
~WgIndexedVertexBuffer()
|
|
{
|
|
pool->retVertexBuffer(dashed);
|
|
free(vbuff);
|
|
free(ibuff);
|
|
}
|
|
|
|
// reset buffer
|
|
void reset(float scale)
|
|
{
|
|
icount = vcount = 0;
|
|
this->scale = scale;
|
|
}
|
|
|
|
void growIndex(size_t grow)
|
|
{
|
|
if (icount + grow >= ireserved) {
|
|
ireserved *= 2;
|
|
ibuff = (uint32_t*) realloc(ibuff, ireserved * sizeof(uint32_t));
|
|
}
|
|
}
|
|
|
|
void growVertex(size_t grow)
|
|
{
|
|
if (vcount + grow >= vreserved) {
|
|
vreserved *= 2;
|
|
vbuff = (Point*) realloc(vbuff, vreserved * sizeof(Point));
|
|
}
|
|
}
|
|
|
|
// get min and max values of the buffer
|
|
void getMinMax(Point& pmin, Point& pmax) const
|
|
{
|
|
if (vcount == 0) return;
|
|
pmax = pmin = vbuff[0];
|
|
for (size_t i = 1; i < vcount; i++) {
|
|
pmin = min(pmin, vbuff[i]);
|
|
pmax = max(pmax, vbuff[i]);
|
|
}
|
|
}
|
|
|
|
// append quad - two triangles formed from four points
|
|
void appendQuad(const Point& p0, const Point& p1, const Point& p2, const Point& p3)
|
|
{
|
|
growVertex(4);
|
|
vbuff[vcount+0] = p0;
|
|
vbuff[vcount+1] = p1;
|
|
vbuff[vcount+2] = p2;
|
|
vbuff[vcount+3] = p3;
|
|
|
|
growIndex(6);
|
|
ibuff[icount+0] = vcount + 0;
|
|
ibuff[icount+1] = vcount + 1;
|
|
ibuff[icount+2] = vcount + 2;
|
|
ibuff[icount+3] = vcount + 1;
|
|
ibuff[icount+4] = vcount + 3;
|
|
ibuff[icount+5] = vcount + 2;
|
|
|
|
vcount += 4;
|
|
icount += 6;
|
|
}
|
|
|
|
// dash buffer by pattern
|
|
void appendStrokesDashed(const WgVertexBuffer& buff, const RenderStroke* rstroke)
|
|
{
|
|
// dashed buffer
|
|
dashed->reset(scale);
|
|
// ignore single points polyline
|
|
if (buff.count < 2) return;
|
|
const float* dashPattern = rstroke->dashPattern;
|
|
size_t dashCnt = rstroke->dashCnt;
|
|
// starting state
|
|
uint32_t index_dash = 0;
|
|
float len_total = dashPattern[index_dash];
|
|
// get dashes length
|
|
float dashes_lenth{};
|
|
for (uint32_t i = 0; i < dashCnt * (dashCnt % 2 + 1); i++) {
|
|
dashes_lenth += dashPattern[i % dashCnt];
|
|
}
|
|
if (dashes_lenth == 0) return;
|
|
// normalize dash offset
|
|
float dashOffset = rstroke->dashOffset;
|
|
while(dashOffset < 0) dashOffset += dashes_lenth;
|
|
while(dashOffset > dashes_lenth) dashOffset -= dashes_lenth;
|
|
auto gap = false;
|
|
// scip dashes by offset
|
|
while(len_total < dashOffset) {
|
|
index_dash = (index_dash + 1) % dashCnt;
|
|
len_total += dashPattern[index_dash];
|
|
gap = !gap;
|
|
}
|
|
len_total -= dashOffset;
|
|
// iterate by polyline points
|
|
for (uint32_t i = 0; i < buff.count - 1; i++) {
|
|
// append current polyline point
|
|
if (!gap) dashed->append(buff.data[i]);
|
|
// move inside polyline segment
|
|
while(len_total < buff.dist[i+1].interval) {
|
|
// get current point
|
|
dashed->append(tvg::lerp(buff.data[i], buff.data[i+1], len_total / buff.dist[i+1].interval));
|
|
// update current state
|
|
index_dash = (index_dash + 1) % dashCnt;
|
|
len_total += dashPattern[index_dash];
|
|
// preceed stroke if dash
|
|
if (!gap) {
|
|
dashed->updateDistances();
|
|
appendStrokes(*dashed, rstroke);
|
|
dashed->reset(scale);
|
|
}
|
|
gap = !gap;
|
|
}
|
|
// update current subline length
|
|
len_total -= buff.dist[i+1].interval;
|
|
}
|
|
// draw last subline
|
|
if (!gap) {
|
|
dashed->append(buff.last());
|
|
dashed->updateDistances();
|
|
appendStrokes(*dashed, rstroke);
|
|
}
|
|
}
|
|
|
|
// append buffer with optional offset
|
|
void appendBuffer(const WgVertexBuffer& buff, Point offset = Point{0.0f, 0.0f})
|
|
{
|
|
growVertex(buff.count);
|
|
growIndex(buff.count);
|
|
|
|
for (uint32_t i = 0; i < buff.count; i++) {
|
|
vbuff[vcount + i] = buff.data[i] + offset;
|
|
ibuff[icount + i] = vcount + i;
|
|
}
|
|
vcount += buff.count;
|
|
icount += buff.count;
|
|
};
|
|
|
|
void appendLine(const Point& v0, const Point& v1, float dist, float halfWidth)
|
|
{
|
|
if(tvg::zero(dist)) return;
|
|
Point sub = v1 - v0;
|
|
Point nrm = {sub.y / dist * halfWidth, -sub.x / dist * halfWidth};
|
|
appendQuad(v0 - nrm, v0 + nrm, v1 - nrm, v1 + nrm);
|
|
}
|
|
|
|
void appendBevel(const Point& v0, const Point& v1, const Point& v2, float dist1, float dist2, float halfWidth)
|
|
{
|
|
if(tvg::zero(dist1) || tvg::zero(dist2)) return;
|
|
Point sub1 = v1 - v0;
|
|
Point sub2 = v2 - v1;
|
|
Point nrm1 {sub1.y / dist1 * halfWidth, -sub1.x / dist1 * halfWidth};
|
|
Point nrm2 {sub2.y / dist2 * halfWidth, -sub2.x / dist2 * halfWidth};
|
|
appendQuad(v1 - nrm1, v1 + nrm1, v1 - nrm2, v1 + nrm2);
|
|
}
|
|
|
|
void appendMiter(const Point& v0, const Point& v1, const Point& v2, float dist1, float dist2, float halfWidth, float miterLimit)
|
|
{
|
|
if(tvg::zero(dist1) || tvg::zero(dist2)) return;
|
|
auto sub1 = v1 - v0;
|
|
auto sub2 = v2 - v1;
|
|
auto nrm1 = Point{+sub1.y / dist1, -sub1.x / dist1};
|
|
auto nrm2 = Point{+sub2.y / dist2, -sub2.x / dist2};
|
|
auto offset1 = nrm1 * halfWidth;
|
|
auto offset2 = nrm2 * halfWidth;
|
|
auto nrm = nrm1 + nrm2;
|
|
normalize(nrm);
|
|
float cosine = dot(nrm, nrm1);
|
|
if (tvg::zero(cosine)) return;
|
|
float angle = std::acos(dot(nrm1, -nrm2));
|
|
if (tvg::zero(angle) || tvg::equal(angle, MATH_PI)) return;
|
|
float miterRatio = 1.0f / (std::sin(angle) * 0.5f);
|
|
if (miterRatio <= miterLimit) {
|
|
appendQuad(v1 + nrm * (halfWidth / cosine), v1 + offset2, v1 + offset1, v1);
|
|
appendQuad(v1 - nrm * (halfWidth / cosine), v1 - offset2, v1 - offset1, v1);
|
|
} else {
|
|
appendQuad(v1 - offset1, v1 + offset2, v1 - offset2, v1 + offset1);
|
|
}
|
|
}
|
|
|
|
void appendSquare(Point v0, Point v1, float dist, float halfWidth)
|
|
{
|
|
if(tvg::zero(dist)) return;
|
|
Point sub = v1 - v0;
|
|
Point offset = sub / dist * halfWidth;
|
|
Point nrm = {+offset.y, -offset.x};
|
|
appendQuad(v1 - nrm, v1 + nrm, v1 + offset - nrm, v1 + offset + nrm);
|
|
}
|
|
|
|
void appendStrokes(const WgVertexBuffer& buff, const RenderStroke* rstroke)
|
|
{
|
|
assert(rstroke);
|
|
// empty buffer gueard
|
|
if (buff.count < 2) return;
|
|
|
|
float halfWidth = rstroke->width * 0.5f;
|
|
|
|
// append core lines
|
|
for (size_t i = 1; i < buff.count; i++) {
|
|
appendLine(buff.data[i-1], buff.data[i], buff.dist[i].interval, halfWidth);
|
|
}
|
|
|
|
// append caps (square)
|
|
if ((rstroke->cap == StrokeCap::Square) && !buff.closed) {
|
|
appendSquare(buff.data[1], buff.data[0], buff.dist[1].interval, halfWidth);
|
|
appendSquare(buff.last(1), buff.last(0), buff.lastDist(0), halfWidth);
|
|
}
|
|
|
|
// append round joints and caps
|
|
if ((rstroke->join == StrokeJoin::Round) || (rstroke->cap == StrokeCap::Round)) {
|
|
// create mesh for circle
|
|
WgVertexBuffer circle;
|
|
circle.reset(buff.scale);
|
|
circle.appendCircle(halfWidth);
|
|
// append caps (round)
|
|
if (rstroke->cap == StrokeCap::Round) {
|
|
appendBuffer(circle, buff.data[0]);
|
|
// append ending cap if polyline is not closed
|
|
if (!buff.closed) appendBuffer(circle, buff.last());
|
|
}
|
|
// append joints (round)
|
|
if (rstroke->join == StrokeJoin::Round) {
|
|
for (size_t i = 1; i < buff.count - 1; i++) {
|
|
appendBuffer(circle, buff.data[i]);
|
|
}
|
|
if (buff.closed) appendBuffer(circle, buff.last());
|
|
}
|
|
}
|
|
|
|
// append closed endings
|
|
if (buff.closed) {
|
|
// close by bevel
|
|
if (rstroke->join == StrokeJoin::Bevel) {
|
|
appendBevel(buff.last(1), buff.data[0], buff.data[1], buff.lastDist(0), buff.dist[1].interval, halfWidth);
|
|
// close by mitter
|
|
} else if (rstroke->join == StrokeJoin::Miter) {
|
|
appendMiter(buff.last(1), buff.data[0], buff.data[1], buff.lastDist(0), buff.dist[1].interval, halfWidth, rstroke->miterlimit);
|
|
}
|
|
}
|
|
|
|
// append joints (bevel)
|
|
if (rstroke->join == StrokeJoin::Bevel) {
|
|
for (size_t i = 1; i < buff.count - 1; i++) {
|
|
appendBevel(buff.data[i-1], buff.data[i], buff.data[i+1], buff.dist[i].interval, buff.dist[i+1].interval, halfWidth);
|
|
}
|
|
// append joints (mitter)
|
|
} else if (rstroke->join == StrokeJoin::Miter) {
|
|
for (size_t i = 1; i < buff.count - 1; i++) {
|
|
appendMiter(buff.data[i-1], buff.data[i], buff.data[i+1], buff.dist[i].interval, buff.dist[i+1].interval, halfWidth, rstroke->miterlimit);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif // _TVG_WG_GEOMETRY_H_
|