thorvg/src/renderer/wg_engine/tvgWgRenderer.cpp
Sergii Liebodkin 9742cfe293 wg_engine: pipelines and bind groups refactoring
- shader and system types synchronized
- pipelens and bind groups description separated
- pipelines description simplified
2024-01-02 20:34:11 +09:00

485 lines
20 KiB
C++

/*
* Copyright (c) 2023 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tvgWgRenderer.h"
#include <iostream>
#ifdef _WIN32
// TODO: cross-platform realization
#include <windows.h>
#endif
#include "tvgWgRenderData.h"
#include "tvgWgShaderSrc.h"
WgRenderer::WgRenderer() {
initialize();
}
WgRenderer::~WgRenderer() {
release();
}
void WgRenderer::initialize() {
// create instance
WGPUInstanceDescriptor instanceDesc{};
instanceDesc.nextInChain = nullptr;
mInstance = wgpuCreateInstance(&instanceDesc);
assert(mInstance);
// request adapter options
WGPURequestAdapterOptions requestAdapterOptions{};
requestAdapterOptions.nextInChain = nullptr;
requestAdapterOptions.compatibleSurface = nullptr;
requestAdapterOptions.powerPreference = WGPUPowerPreference_HighPerformance;
requestAdapterOptions.forceFallbackAdapter = false;
// on adapter request ended function
auto onAdapterRequestEnded = [](WGPURequestAdapterStatus status, WGPUAdapter adapter, char const * message, void * pUserData) {
if (status != WGPURequestAdapterStatus_Success)
TVGERR("WG_RENDERER", "Adapter request: %s", message);
*((WGPUAdapter*)pUserData) = adapter;
};
// request adapter
wgpuInstanceRequestAdapter(mInstance, &requestAdapterOptions, onAdapterRequestEnded, &mAdapter);
assert(mAdapter);
// adapter enumarate fueatures
WGPUFeatureName featureNames[32]{};
size_t featuresCount = wgpuAdapterEnumerateFeatures(mAdapter, featureNames);
WGPUAdapterProperties adapterProperties{};
wgpuAdapterGetProperties(mAdapter, &adapterProperties);
WGPUSupportedLimits supportedLimits{};
wgpuAdapterGetLimits(mAdapter, &supportedLimits);
// reguest device
WGPUDeviceDescriptor deviceDesc{};
deviceDesc.nextInChain = nullptr;
deviceDesc.label = "The device";
deviceDesc.requiredFeaturesCount = featuresCount;
deviceDesc.requiredFeatures = featureNames;
deviceDesc.requiredLimits = nullptr;
deviceDesc.defaultQueue.nextInChain = nullptr;
deviceDesc.defaultQueue.label = "The default queue";
deviceDesc.deviceLostCallback = nullptr;
deviceDesc.deviceLostUserdata = nullptr;
// on device request ended function
auto onDeviceRequestEnded = [](WGPURequestDeviceStatus status, WGPUDevice device, char const * message, void * pUserData) {
if (status != WGPURequestDeviceStatus_Success)
TVGERR("WG_RENDERER", "Device request: %s", message);
*((WGPUDevice*)pUserData) = device;
};
// request device
wgpuAdapterRequestDevice(mAdapter, &deviceDesc, onDeviceRequestEnded, &mDevice);
assert(mDevice);
// on device error function
auto onDeviceError = [](WGPUErrorType type, char const* message, void* pUserData) {
TVGERR("WG_RENDERER", "Uncaptured device error: %s", message);
// TODO: remove direct error message
std::cout << message << std::endl;
};
// set device error handling
wgpuDeviceSetUncapturedErrorCallback(mDevice, onDeviceError, nullptr);
mQueue = wgpuDeviceGetQueue(mDevice);
assert(mQueue);
// create pipelines
mPipelines.initialize(mDevice);
}
void WgRenderer::release() {
if (mStencilTex) {
wgpuTextureDestroy(mStencilTex);
wgpuTextureRelease(mStencilTex);
}
if (mStencilTexView) wgpuTextureViewRelease(mStencilTexView);
if (mSwapChain) wgpuSwapChainRelease(mSwapChain);
if (mSurface) wgpuSurfaceRelease(mSurface);
mBindGroupCanvasWnd.release();
mBindGroupPaintWnd.release();
mGeometryDataWnd.release();
mPipelines.release();
if (mDevice) {
wgpuDeviceDestroy(mDevice);
wgpuDeviceRelease(mDevice);
}
if (mAdapter) wgpuAdapterRelease(mAdapter);
if (mInstance) wgpuInstanceRelease(mInstance);
}
RenderData WgRenderer::prepare(const RenderShape& rshape, RenderData data, const RenderTransform* transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags, bool clipper) {
// get or create render data shape
auto renderDataShape = (WgRenderDataShape*)data;
if (!renderDataShape) {
renderDataShape = new WgRenderDataShape();
renderDataShape->initialize(mDevice);
}
// update geometry
if (flags & (RenderUpdateFlag::Path | RenderUpdateFlag::Stroke)) {
renderDataShape->releaseRenderData();
renderDataShape->tesselate(mDevice, mQueue, rshape);
renderDataShape->stroke(mDevice, mQueue, rshape);
}
// update paint settings
if (flags & (RenderUpdateFlag::Transform | RenderUpdateFlag::Blend)) {
WgShaderTypeMat4x4f modelMat(transform);
WgShaderTypeBlendSettings blendSettings(mTargetSurface.cs);
renderDataShape->mBindGroupPaint.initialize(mDevice, mQueue, modelMat, blendSettings);
}
// setup fill settings
renderDataShape->mRenderSettingsShape.update(mDevice, mQueue, rshape.fill, rshape.color, flags);
if (rshape.stroke)
renderDataShape->mRenderSettingsStroke.update(mDevice, mQueue, rshape.stroke->fill, rshape.stroke->color, flags);
return renderDataShape;
}
RenderData WgRenderer::prepare(const Array<RenderData>& scene, RenderData data, const RenderTransform* transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags) {
return nullptr;
}
RenderData WgRenderer::prepare(Surface* surface, const RenderMesh* mesh, RenderData data, const RenderTransform* transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags) {
// get or create render data shape
auto renderDataShape = (WgRenderDataShape*)data;
if (!renderDataShape) {
renderDataShape = new WgRenderDataShape();
renderDataShape->initialize(mDevice);
}
// update paint settings
if (flags & (RenderUpdateFlag::Transform | RenderUpdateFlag::Blend)) {
WgShaderTypeMat4x4f modelMat(transform);
WgShaderTypeBlendSettings blendSettings(surface->cs);
renderDataShape->mBindGroupPaint.initialize(mDevice, mQueue, modelMat, blendSettings);
}
// update image data
if (flags & (RenderUpdateFlag::Path | RenderUpdateFlag::Image)) {
renderDataShape->releaseRenderData();
renderDataShape->tesselate(mDevice, mQueue, surface, mesh);
renderDataShape->mBindGroupPicture.initialize(
mDevice, mQueue,
renderDataShape->mImageData.mSampler,
renderDataShape->mImageData.mTextureView);
}
return renderDataShape;
}
bool WgRenderer::preRender() {
return true;
}
bool WgRenderer::renderShape(RenderData data) {
mRenderDatas.push(data);
return true;
}
bool WgRenderer::renderImage(RenderData data) {
mRenderDatas.push(data);
return true;
}
bool WgRenderer::postRender() {
return true;
}
bool WgRenderer::dispose(RenderData data) {
auto renderData = (WgRenderData*)data;
if (renderData) renderData->release();
return true;
}
RenderRegion WgRenderer::region(RenderData data) {
return { 0, 0, INT32_MAX, INT32_MAX };
}
RenderRegion WgRenderer::viewport() {
return { 0, 0, INT32_MAX, INT32_MAX };
}
bool WgRenderer::viewport(const RenderRegion& vp) {
return true;
}
bool WgRenderer::blend(BlendMethod method) {
return false;
}
ColorSpace WgRenderer::colorSpace() {
return ColorSpace::Unsupported;
}
bool WgRenderer::clear() {
return true;
}
bool WgRenderer::sync() {
WGPUTextureView backBufferView = wgpuSwapChainGetCurrentTextureView(mSwapChain);
// command buffer descriptor
WGPUCommandBufferDescriptor commandBufferDesc{};
commandBufferDesc.nextInChain = nullptr;
commandBufferDesc.label = "The command buffer";
WGPUCommandBuffer commandsBuffer = nullptr; {
// command encoder descriptor
WGPUCommandEncoderDescriptor commandEncoderDesc{};
commandEncoderDesc.nextInChain = nullptr;
commandEncoderDesc.label = "The command encoder";
// begin render pass
WGPUCommandEncoder commandEncoder = wgpuDeviceCreateCommandEncoder(mDevice, &commandEncoderDesc); {
// render pass depth stencil attachment
WGPURenderPassDepthStencilAttachment depthStencilAttachment{};
depthStencilAttachment.view = mStencilTexView;
depthStencilAttachment.depthLoadOp = WGPULoadOp_Clear;
depthStencilAttachment.depthStoreOp = WGPUStoreOp_Store;
depthStencilAttachment.depthClearValue = 1.0f;
depthStencilAttachment.depthReadOnly = false;
depthStencilAttachment.stencilLoadOp = WGPULoadOp_Clear;
depthStencilAttachment.stencilStoreOp = WGPUStoreOp_Store;
depthStencilAttachment.stencilClearValue = 0;
depthStencilAttachment.stencilReadOnly = false;
// render pass color attachment
WGPURenderPassColorAttachment colorAttachment{};
colorAttachment.view = backBufferView;
colorAttachment.resolveTarget = nullptr;
if (mClearBuffer) {
colorAttachment.loadOp = WGPULoadOp_Clear;
colorAttachment.clearValue = {0, 0, 0, 0};
} else {
colorAttachment.loadOp = WGPULoadOp_Load;
}
colorAttachment.storeOp = WGPUStoreOp_Store;
colorAttachment.clearValue = { 0.0f, 0.0f, 0.0f, 1.0 };
// render pass descriptor
WGPURenderPassDescriptor renderPassDesc{};
renderPassDesc.nextInChain = nullptr;
renderPassDesc.label = "The render pass";
renderPassDesc.colorAttachmentCount = 1;
renderPassDesc.colorAttachments = &colorAttachment;
renderPassDesc.depthStencilAttachment = &depthStencilAttachment;
//renderPassDesc.depthStencilAttachment = nullptr;
renderPassDesc.occlusionQuerySet = nullptr;
renderPassDesc.timestampWriteCount = 0;
renderPassDesc.timestampWrites = nullptr;
// begin render pass
WGPURenderPassEncoder renderPassEncoder = wgpuCommandEncoderBeginRenderPass(commandEncoder, &renderPassDesc); {
// iterate render data
for (size_t i = 0; i < mRenderDatas.count; i++) {
WgRenderDataShape* renderData = (WgRenderDataShape*)(mRenderDatas[i]);
// draw shape geometry
wgpuRenderPassEncoderSetStencilReference(renderPassEncoder, 0);
for (uint32_t j = 0; j < renderData->mGeometryDataShape.count; j++) {
// draw to stencil (first pass)
mPipelines.mPipelineFillShape.use(renderPassEncoder, mBindGroupCanvasWnd, renderData->mBindGroupPaint);
renderData->mGeometryDataShape[j]->draw(renderPassEncoder);
// fill shape (second pass)
WgRenderDataShapeSettings& settings = renderData->mRenderSettingsShape;
if (settings.mFillType == WgRenderDataShapeFillType::Solid)
mPipelines.mPipelineSolid.use(renderPassEncoder, mBindGroupCanvasWnd, mBindGroupPaintWnd, settings.mBindGroupSolid);
else if (settings.mFillType == WgRenderDataShapeFillType::Linear)
mPipelines.mPipelineLinear.use(renderPassEncoder, mBindGroupCanvasWnd, mBindGroupPaintWnd, settings.mBindGroupLinear);
else if (settings.mFillType == WgRenderDataShapeFillType::Radial)
mPipelines.mPipelineRadial.use(renderPassEncoder, mBindGroupCanvasWnd, mBindGroupPaintWnd, settings.mBindGroupRadial);
mGeometryDataWnd.draw(renderPassEncoder);
}
// draw stroke geometry
if (renderData->mGeometryDataStroke.count > 0) {
// draw strokes to stencil (first pass)
wgpuRenderPassEncoderSetStencilReference(renderPassEncoder, 255);
for (uint32_t j = 0; j < renderData->mGeometryDataStroke.count; j++) {
mPipelines.mPipelineFillStroke.use(renderPassEncoder, mBindGroupCanvasWnd, renderData->mBindGroupPaint);
renderData->mGeometryDataStroke[j]->draw(renderPassEncoder);
}
// fill shape (second pass)
wgpuRenderPassEncoderSetStencilReference(renderPassEncoder, 0);
WgRenderDataShapeSettings& settings = renderData->mRenderSettingsStroke;
if (settings.mFillType == WgRenderDataShapeFillType::Solid)
mPipelines.mPipelineSolid.use(renderPassEncoder, mBindGroupCanvasWnd, mBindGroupPaintWnd, settings.mBindGroupSolid);
else if (settings.mFillType == WgRenderDataShapeFillType::Linear)
mPipelines.mPipelineLinear.use(renderPassEncoder, mBindGroupCanvasWnd, mBindGroupPaintWnd, settings.mBindGroupLinear);
else if (settings.mFillType == WgRenderDataShapeFillType::Radial)
mPipelines.mPipelineRadial.use(renderPassEncoder, mBindGroupCanvasWnd, mBindGroupPaintWnd, settings.mBindGroupRadial);
mGeometryDataWnd.draw(renderPassEncoder);
}
// render image
if (renderData->mGeometryDataImage.count > 0) {
wgpuRenderPassEncoderSetStencilReference(renderPassEncoder, 0);
for (uint32_t j = 0; j < renderData->mGeometryDataImage.count; j++) {
mPipelines.mPipelineImage.use(
renderPassEncoder,
mBindGroupCanvasWnd,
renderData->mBindGroupPaint,
renderData->mBindGroupPicture);
renderData->mGeometryDataImage[j]->drawImage(renderPassEncoder);
}
}
}
}
// end render pass
wgpuRenderPassEncoderEnd(renderPassEncoder);
wgpuRenderPassEncoderRelease(renderPassEncoder);
// release backbuffer and present
wgpuTextureViewRelease(backBufferView);
}
commandsBuffer = wgpuCommandEncoderFinish(commandEncoder, &commandBufferDesc);
wgpuCommandEncoderRelease(commandEncoder);
}
wgpuQueueSubmit(mQueue, 1, &commandsBuffer);
wgpuCommandBufferRelease(commandsBuffer);
// go to the next frame
wgpuSwapChainPresent(mSwapChain);
mRenderDatas.clear();
return true;
}
bool WgRenderer::target(uint32_t* buffer, uint32_t stride, uint32_t w, uint32_t h) {
// store target surface properties
mTargetSurface.stride = stride;
mTargetSurface.w = w;
mTargetSurface.h = h;
// update view matrix
mViewMatrix[0] = +2.0f / w; mViewMatrix[1] = +0.0f; mViewMatrix[2] = +0.0f; mViewMatrix[3] = +0.0f;
mViewMatrix[4] = +0.0f; mViewMatrix[5] = -2.0f / h; mViewMatrix[6] = +0.0f; mViewMatrix[7] = +0.0f;
mViewMatrix[8] = +0.0f; mViewMatrix[9] = +0.0f; mViewMatrix[10] = -1.0f; mViewMatrix[11] = +0.0f;
mViewMatrix[12] = -1.0f; mViewMatrix[13] = +1.0f; mViewMatrix[14] = +0.0f; mViewMatrix[15] = +1.0f;
// TODO: Add ability to render into offscreen buffer
return true;
}
// target for native window handle
bool WgRenderer::target(void* window, uint32_t w, uint32_t h) {
// store target surface properties
mTargetSurface.stride = w;
mTargetSurface.w = w > 0 ? w : 1;
mTargetSurface.h = h > 0 ? h : 1;
// update view matrix
mViewMatrix[0] = +2.0f / w; mViewMatrix[1] = +0.0f; mViewMatrix[2] = +0.0f; mViewMatrix[3] = +0.0f;
mViewMatrix[4] = +0.0f; mViewMatrix[5] = -2.0f / h; mViewMatrix[6] = +0.0f; mViewMatrix[7] = +0.0f;
mViewMatrix[8] = +0.0f; mViewMatrix[9] = +0.0f; mViewMatrix[10] = -1.0f; mViewMatrix[11] = +0.0f;
mViewMatrix[12] = -1.0f; mViewMatrix[13] = +1.0f; mViewMatrix[14] = +0.0f; mViewMatrix[15] = +1.0f;
// TODO: replace solution to cross-platform realization
// surface descriptor from windows hwnd
WGPUSurfaceDescriptorFromWindowsHWND surfaceDescHwnd{};
surfaceDescHwnd.chain.next = nullptr;
surfaceDescHwnd.chain.sType = WGPUSType_SurfaceDescriptorFromWindowsHWND;
surfaceDescHwnd.hinstance = GetModuleHandle(NULL);
surfaceDescHwnd.hwnd = (HWND)window;
WGPUSurfaceDescriptor surfaceDesc{};
surfaceDesc.nextInChain = (const WGPUChainedStruct*)&surfaceDescHwnd;
surfaceDesc.label = "The surface";
mSurface = wgpuInstanceCreateSurface(mInstance, &surfaceDesc);
assert(mSurface);
// get preferred format
WGPUTextureFormat swapChainFormat = WGPUTextureFormat_BGRA8Unorm;
// swapchain descriptor
WGPUSwapChainDescriptor swapChainDesc{};
swapChainDesc.nextInChain = nullptr;
swapChainDesc.label = "The swapchain";
swapChainDesc.usage = WGPUTextureUsage_RenderAttachment;
swapChainDesc.format = swapChainFormat;
swapChainDesc.width = mTargetSurface.w;
swapChainDesc.height = mTargetSurface.h;
swapChainDesc.presentMode = WGPUPresentMode_Mailbox;
mSwapChain = wgpuDeviceCreateSwapChain(mDevice, mSurface, &swapChainDesc);
assert(mSwapChain);
// depth-stencil texture
WGPUTextureDescriptor textureDesc{};
textureDesc.nextInChain = nullptr;
textureDesc.label = "The depth-stencil texture";
textureDesc.usage = WGPUTextureUsage_RenderAttachment;
textureDesc.dimension = WGPUTextureDimension_2D;
textureDesc.size = { swapChainDesc.width, swapChainDesc.height, 1 }; // window size
textureDesc.format = WGPUTextureFormat_Stencil8;
textureDesc.mipLevelCount = 1;
textureDesc.sampleCount = 1;
textureDesc.viewFormatCount = 0;
textureDesc.viewFormats = nullptr;
mStencilTex = wgpuDeviceCreateTexture(mDevice, &textureDesc);
assert(mStencilTex);
// depth-stencil texture view
WGPUTextureViewDescriptor textureViewDesc{};
textureViewDesc.nextInChain = nullptr;
textureViewDesc.label = "The depth-stencil texture view";
textureViewDesc.format = WGPUTextureFormat_Stencil8;
textureViewDesc.dimension = WGPUTextureViewDimension_2D;
textureViewDesc.baseMipLevel = 0;
textureViewDesc.mipLevelCount = 1;
textureViewDesc.baseArrayLayer = 0;
textureViewDesc.arrayLayerCount = 1;
textureViewDesc.aspect = WGPUTextureAspect_All;
mStencilTexView = wgpuTextureCreateView(mStencilTex, &textureViewDesc);
assert(mStencilTexView);
// initialize window binding groups
WgShaderTypeMat4x4f viewMat(w, h);
mBindGroupCanvasWnd.initialize(mDevice, mQueue, viewMat);
WgShaderTypeMat4x4f modelMat;
WgShaderTypeBlendSettings blendSettings(ColorSpace::ABGR8888);
mBindGroupPaintWnd.initialize(mDevice, mQueue, modelMat, blendSettings);
// update pipeline geometry data
WgVertexList wnd;
wnd.appendRect(WgPoint(0.0f, 0.0f), WgPoint(w, 0.0f), WgPoint(0.0f, h), WgPoint(w, h));
mGeometryDataWnd.update(mDevice, mQueue, &wnd);
return true;
}
Compositor* WgRenderer::target(const RenderRegion& region, ColorSpace cs) {
return nullptr;
}
bool WgRenderer::beginComposite(Compositor* cmp, CompositeMethod method, uint8_t opacity) {
return false;
}
bool WgRenderer::endComposite(Compositor* cmp) {
return false;
}
WgRenderer* WgRenderer::gen() {
return new WgRenderer();
}
bool WgRenderer::init(uint32_t threads) {
return true;
}
bool WgRenderer::term() {
return true;
}