thorvg/src/renderer/sw_engine/tvgSwFill.cpp
Mira Grudzinska 98c6d92793 sw_engine: improve grad quality
For gradients with fill spread set as repeat,
the lack of anti-aliasing between the last and
the first color caused noticeable jagged edges.
Interpolation was introduced between them,
visually improving the gradient quality.
2024-07-01 18:24:30 +09:00

858 lines
31 KiB
C++

/*
* Copyright (c) 2020 - 2024 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tvgMath.h"
#include "tvgSwCommon.h"
#include "tvgFill.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
#define RADIAL_A_THRESHOLD 0.0005f
#define GRADIENT_STOP_SIZE 1024
#define FIXPT_BITS 8
#define FIXPT_SIZE (1<<FIXPT_BITS)
/*
* quadratic equation with the following coefficients (rx and ry defined in the _calculateCoefficients()):
* A = a // fill->radial.a
* B = 2 * (dr * fr + rx * dx + ry * dy)
* C = fr^2 - rx^2 - ry^2
* Derivatives are computed with respect to dx.
* This procedure aims to optimize and eliminate the need to calculate all values from the beginning
* for consecutive x values with a constant y. The Taylor series expansions are computed as long as
* its terms are non-zero.
*/
static void _calculateCoefficients(const SwFill* fill, uint32_t x, uint32_t y, float& b, float& deltaB, float& det, float& deltaDet, float& deltaDeltaDet)
{
auto radial = &fill->radial;
auto rx = (x + 0.5f) * radial->a11 + (y + 0.5f) * radial->a12 + radial->a13 - radial->fx;
auto ry = (x + 0.5f) * radial->a21 + (y + 0.5f) * radial->a22 + radial->a23 - radial->fy;
b = (radial->dr * radial->fr + rx * radial->dx + ry * radial->dy) * radial->invA;
deltaB = (radial->a11 * radial->dx + radial->a21 * radial->dy) * radial->invA;
auto rr = rx * rx + ry * ry;
auto deltaRr = 2.0f * (rx * radial->a11 + ry * radial->a21) * radial->invA;
auto deltaDeltaRr = 2.0f * (radial->a11 * radial->a11 + radial->a21 * radial->a21) * radial->invA;
det = b * b + (rr - radial->fr * radial->fr) * radial->invA;
deltaDet = 2.0f * b * deltaB + deltaB * deltaB + deltaRr + deltaDeltaRr;
deltaDeltaDet = 2.0f * deltaB * deltaB + deltaDeltaRr;
}
static uint32_t _estimateAAMargin(const Fill* fdata)
{
constexpr float marginScalingFactor = 800.0f;
if (fdata->identifier() == TVG_CLASS_ID_RADIAL) {
auto radius = P(static_cast<const RadialGradient*>(fdata))->r;
return mathZero(radius) ? 0 : static_cast<uint32_t>(marginScalingFactor / radius);
}
auto grad = P(static_cast<const LinearGradient*>(fdata));
Point p1 {grad->x1, grad->y1};
Point p2 {grad->x2, grad->y2};
auto length = mathLength(&p1, &p2);
return mathZero(length) ? 0 : static_cast<uint32_t>(marginScalingFactor / length);
}
static void _adjustAAMargin(uint32_t& iMargin, uint32_t index)
{
constexpr float threshold = 0.1f;
constexpr uint32_t iMarginMax = 40;
auto iThreshold = static_cast<uint32_t>(index * threshold);
if (iMargin > iThreshold) iMargin = iThreshold;
if (iMargin > iMarginMax) iMargin = iMarginMax;
}
static inline uint32_t _alphaUnblend(uint32_t c)
{
auto a = (c >> 24);
if (a == 255 || a == 0) return c;
auto invA = 255.0f / static_cast<float>(a);
auto c0 = static_cast<uint8_t>(static_cast<float>((c >> 16) & 0xFF) * invA);
auto c1 = static_cast<uint8_t>(static_cast<float>((c >> 8) & 0xFF) * invA);
auto c2 = static_cast<uint8_t>(static_cast<float>(c & 0xFF) * invA);
return (a << 24) | (c0 << 16) | (c1 << 8) | c2;
}
static void _applyAA(const SwFill* fill, uint32_t begin, uint32_t end)
{
if (begin == 0 || end == 0) return;
auto i = GRADIENT_STOP_SIZE - end;
auto rgbaEnd = _alphaUnblend(fill->ctable[i]);
auto rgbaBegin = _alphaUnblend(fill->ctable[begin]);
auto dt = 1.0f / (begin + end + 1.0f);
float t = dt;
while (i != begin) {
auto dist = 255 - static_cast<int32_t>(255 * t);
auto color = INTERPOLATE(rgbaEnd, rgbaBegin, dist);
fill->ctable[i++] = ALPHA_BLEND((color | 0xff000000), (color >> 24));
if (i == GRADIENT_STOP_SIZE) i = 0;
t += dt;
}
}
static bool _updateColorTable(SwFill* fill, const Fill* fdata, const SwSurface* surface, uint8_t opacity)
{
if (!fill->ctable) {
fill->ctable = static_cast<uint32_t*>(malloc(GRADIENT_STOP_SIZE * sizeof(uint32_t)));
if (!fill->ctable) return false;
}
const Fill::ColorStop* colors;
auto cnt = fdata->colorStops(&colors);
if (cnt == 0 || !colors) return false;
auto pColors = colors;
auto a = MULTIPLY(pColors->a, opacity);
if (a < 255) fill->translucent = true;
auto r = pColors->r;
auto g = pColors->g;
auto b = pColors->b;
auto rgba = surface->join(r, g, b, a);
auto inc = 1.0f / static_cast<float>(GRADIENT_STOP_SIZE);
auto pos = 1.5f * inc;
uint32_t i = 0;
//If repeat is true, anti-aliasing must be applied between the last and the first colors.
auto repeat = fill->spread == FillSpread::Repeat;
uint32_t iAABegin = repeat ? _estimateAAMargin(fdata) : 0;
uint32_t iAAEnd = 0;
fill->ctable[i++] = ALPHA_BLEND(rgba | 0xff000000, a);
while (pos <= pColors->offset) {
fill->ctable[i] = fill->ctable[i - 1];
++i;
pos += inc;
}
for (uint32_t j = 0; j < cnt - 1; ++j) {
if (repeat && j == cnt - 2 && iAAEnd == 0) {
iAAEnd = iAABegin;
_adjustAAMargin(iAAEnd, GRADIENT_STOP_SIZE - i);
}
auto curr = colors + j;
auto next = curr + 1;
auto delta = 1.0f / (next->offset - curr->offset);
auto a2 = MULTIPLY(next->a, opacity);
if (!fill->translucent && a2 < 255) fill->translucent = true;
auto rgba2 = surface->join(next->r, next->g, next->b, a2);
while (pos < next->offset && i < GRADIENT_STOP_SIZE) {
auto t = (pos - curr->offset) * delta;
auto dist = static_cast<int32_t>(255 * t);
auto dist2 = 255 - dist;
auto color = INTERPOLATE(rgba, rgba2, dist2);
fill->ctable[i] = ALPHA_BLEND((color | 0xff000000), (color >> 24));
++i;
pos += inc;
}
rgba = rgba2;
a = a2;
if (repeat && j == 0) _adjustAAMargin(iAABegin, i - 1);
}
rgba = ALPHA_BLEND((rgba | 0xff000000), a);
for (; i < GRADIENT_STOP_SIZE; ++i)
fill->ctable[i] = rgba;
//For repeat fill spread apply anti-aliasing between the last and first colors,
//othewise make sure the last color stop is represented at the end of the table.
if (repeat) _applyAA(fill, iAABegin, iAAEnd);
else fill->ctable[GRADIENT_STOP_SIZE - 1] = rgba;
return true;
}
bool _prepareLinear(SwFill* fill, const LinearGradient* linear, const Matrix* transform)
{
float x1, x2, y1, y2;
if (linear->linear(&x1, &y1, &x2, &y2) != Result::Success) return false;
fill->linear.dx = x2 - x1;
fill->linear.dy = y2 - y1;
fill->linear.len = fill->linear.dx * fill->linear.dx + fill->linear.dy * fill->linear.dy;
if (fill->linear.len < FLOAT_EPSILON) return true;
fill->linear.dx /= fill->linear.len;
fill->linear.dy /= fill->linear.len;
fill->linear.offset = -fill->linear.dx * x1 - fill->linear.dy * y1;
auto gradTransform = linear->transform();
bool isTransformation = !mathIdentity((const Matrix*)(&gradTransform));
if (isTransformation) {
if (transform) gradTransform = *transform * gradTransform;
} else if (transform) {
gradTransform = *transform;
isTransformation = true;
}
if (isTransformation) {
Matrix invTransform;
if (!mathInverse(&gradTransform, &invTransform)) return false;
fill->linear.offset += fill->linear.dx * invTransform.e13 + fill->linear.dy * invTransform.e23;
auto dx = fill->linear.dx;
fill->linear.dx = dx * invTransform.e11 + fill->linear.dy * invTransform.e21;
fill->linear.dy = dx * invTransform.e12 + fill->linear.dy * invTransform.e22;
fill->linear.len = fill->linear.dx * fill->linear.dx + fill->linear.dy * fill->linear.dy;
}
return true;
}
bool _prepareRadial(SwFill* fill, const RadialGradient* radial, const Matrix* transform)
{
auto cx = P(radial)->cx;
auto cy = P(radial)->cy;
auto r = P(radial)->r;
auto fx = P(radial)->fx;
auto fy = P(radial)->fy;
auto fr = P(radial)->fr;
if (r < FLOAT_EPSILON) return true;
fill->radial.dr = r - fr;
fill->radial.dx = cx - fx;
fill->radial.dy = cy - fy;
fill->radial.fr = fr;
fill->radial.fx = fx;
fill->radial.fy = fy;
fill->radial.a = fill->radial.dr * fill->radial.dr - fill->radial.dx * fill->radial.dx - fill->radial.dy * fill->radial.dy;
//This condition fulfills the SVG 1.1 std:
//the focal point, if outside the end circle, is moved to be on the end circle
//See: the SVG 2 std requirements: https://www.w3.org/TR/SVG2/pservers.html#RadialGradientNotes
if (fill->radial.a < 0) {
auto dist = sqrtf(fill->radial.dx * fill->radial.dx + fill->radial.dy * fill->radial.dy);
fill->radial.fx = cx + r * (fx - cx) / dist;
fill->radial.fy = cy + r * (fy - cy) / dist;
fill->radial.dx = cx - fill->radial.fx;
fill->radial.dy = cy - fill->radial.fy;
// Prevent loss of precision on Apple Silicon when dr=dy and dx=0 due to FMA
// https://github.com/thorvg/thorvg/issues/2014
auto dr2 = fill->radial.dr * fill->radial.dr;
auto dx2 = fill->radial.dx * fill->radial.dx;
auto dy2 = fill->radial.dy * fill->radial.dy;
fill->radial.a = dr2 - dx2 - dy2;
}
if (fill->radial.a > 0) fill->radial.invA = 1.0f / fill->radial.a;
auto gradTransform = radial->transform();
bool isTransformation = !mathIdentity((const Matrix*)(&gradTransform));
if (transform) {
if (isTransformation) gradTransform = *transform * gradTransform;
else {
gradTransform = *transform;
isTransformation = true;
}
}
if (isTransformation) {
Matrix invTransform;
if (!mathInverse(&gradTransform, &invTransform)) return false;
fill->radial.a11 = invTransform.e11;
fill->radial.a12 = invTransform.e12;
fill->radial.a13 = invTransform.e13;
fill->radial.a21 = invTransform.e21;
fill->radial.a22 = invTransform.e22;
fill->radial.a23 = invTransform.e23;
} else {
fill->radial.a11 = fill->radial.a22 = 1.0f;
fill->radial.a12 = fill->radial.a13 = 0.0f;
fill->radial.a21 = fill->radial.a23 = 0.0f;
}
return true;
}
static inline uint32_t _clamp(const SwFill* fill, int32_t pos)
{
switch (fill->spread) {
case FillSpread::Pad: {
if (pos >= GRADIENT_STOP_SIZE) pos = GRADIENT_STOP_SIZE - 1;
else if (pos < 0) pos = 0;
break;
}
case FillSpread::Repeat: {
pos = pos % GRADIENT_STOP_SIZE;
if (pos < 0) pos = GRADIENT_STOP_SIZE + pos;
break;
}
case FillSpread::Reflect: {
auto limit = GRADIENT_STOP_SIZE * 2;
pos = pos % limit;
if (pos < 0) pos = limit + pos;
if (pos >= GRADIENT_STOP_SIZE) pos = (limit - pos - 1);
break;
}
}
return pos;
}
static inline uint32_t _fixedPixel(const SwFill* fill, int32_t pos)
{
int32_t i = (pos + (FIXPT_SIZE / 2)) >> FIXPT_BITS;
return fill->ctable[_clamp(fill, i)];
}
static inline uint32_t _pixel(const SwFill* fill, float pos)
{
auto i = static_cast<int32_t>(pos * (GRADIENT_STOP_SIZE - 1) + 0.5f);
return fill->ctable[_clamp(fill, i)];
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
void fillRadial(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity)
{
//edge case
if (fill->radial.a < RADIAL_A_THRESHOLD) {
auto radial = &fill->radial;
auto rx = (x + 0.5f) * radial->a11 + (y + 0.5f) * radial->a12 + radial->a13 - radial->fx;
auto ry = (x + 0.5f) * radial->a21 + (y + 0.5f) * radial->a22 + radial->a23 - radial->fy;
if (opacity == 255) {
for (uint32_t i = 0 ; i < len ; ++i, ++dst, cmp += csize) {
auto x0 = 0.5f * (rx * rx + ry * ry - radial->fr * radial->fr) / (radial->dr * radial->fr + rx * radial->dx + ry * radial->dy);
*dst = opBlendNormal(_pixel(fill, x0), *dst, alpha(cmp));
rx += radial->a11;
ry += radial->a21;
}
} else {
for (uint32_t i = 0 ; i < len ; ++i, ++dst, cmp += csize) {
auto x0 = 0.5f * (rx * rx + ry * ry - radial->fr * radial->fr) / (radial->dr * radial->fr + rx * radial->dx + ry * radial->dy);
*dst = opBlendNormal(_pixel(fill, x0), *dst, MULTIPLY(opacity, alpha(cmp)));
rx += radial->a11;
ry += radial->a21;
}
}
} else {
float b, deltaB, det, deltaDet, deltaDeltaDet;
_calculateCoefficients(fill, x, y, b, deltaB, det, deltaDet, deltaDeltaDet);
if (opacity == 255) {
for (uint32_t i = 0 ; i < len ; ++i, ++dst, cmp += csize) {
*dst = opBlendNormal(_pixel(fill, sqrtf(det) - b), *dst, alpha(cmp));
det += deltaDet;
deltaDet += deltaDeltaDet;
b += deltaB;
}
} else {
for (uint32_t i = 0 ; i < len ; ++i, ++dst, cmp += csize) {
*dst = opBlendNormal(_pixel(fill, sqrtf(det) - b), *dst, MULTIPLY(opacity, alpha(cmp)));
det += deltaDet;
deltaDet += deltaDeltaDet;
b += deltaB;
}
}
}
}
void fillRadial(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a)
{
if (fill->radial.a < RADIAL_A_THRESHOLD) {
auto radial = &fill->radial;
auto rx = (x + 0.5f) * radial->a11 + (y + 0.5f) * radial->a12 + radial->a13 - radial->fx;
auto ry = (x + 0.5f) * radial->a21 + (y + 0.5f) * radial->a22 + radial->a23 - radial->fy;
for (uint32_t i = 0; i < len; ++i, ++dst) {
auto x0 = 0.5f * (rx * rx + ry * ry - radial->fr * radial->fr) / (radial->dr * radial->fr + rx * radial->dx + ry * radial->dy);
*dst = op(_pixel(fill, x0), *dst, a);
rx += radial->a11;
ry += radial->a21;
}
} else {
float b, deltaB, det, deltaDet, deltaDeltaDet;
_calculateCoefficients(fill, x, y, b, deltaB, det, deltaDet, deltaDeltaDet);
for (uint32_t i = 0; i < len; ++i, ++dst) {
*dst = op(_pixel(fill, sqrtf(det) - b), *dst, a);
det += deltaDet;
deltaDet += deltaDeltaDet;
b += deltaB;
}
}
}
void fillRadial(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask maskOp, uint8_t a)
{
if (fill->radial.a < RADIAL_A_THRESHOLD) {
auto radial = &fill->radial;
auto rx = (x + 0.5f) * radial->a11 + (y + 0.5f) * radial->a12 + radial->a13 - radial->fx;
auto ry = (x + 0.5f) * radial->a21 + (y + 0.5f) * radial->a22 + radial->a23 - radial->fy;
for (uint32_t i = 0 ; i < len ; ++i, ++dst) {
auto x0 = 0.5f * (rx * rx + ry * ry - radial->fr * radial->fr) / (radial->dr * radial->fr + rx * radial->dx + ry * radial->dy);
auto src = MULTIPLY(a, A(_pixel(fill, x0)));
*dst = maskOp(src, *dst, ~src);
rx += radial->a11;
ry += radial->a21;
}
} else {
float b, deltaB, det, deltaDet, deltaDeltaDet;
_calculateCoefficients(fill, x, y, b, deltaB, det, deltaDet, deltaDeltaDet);
for (uint32_t i = 0 ; i < len ; ++i, ++dst) {
auto src = MULTIPLY(a, A(_pixel(fill, sqrtf(det) - b)));
*dst = maskOp(src, *dst, ~src);
det += deltaDet;
deltaDet += deltaDeltaDet;
b += deltaB;
}
}
}
void fillRadial(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask maskOp, uint8_t a)
{
if (fill->radial.a < RADIAL_A_THRESHOLD) {
auto radial = &fill->radial;
auto rx = (x + 0.5f) * radial->a11 + (y + 0.5f) * radial->a12 + radial->a13 - radial->fx;
auto ry = (x + 0.5f) * radial->a21 + (y + 0.5f) * radial->a22 + radial->a23 - radial->fy;
for (uint32_t i = 0 ; i < len ; ++i, ++dst, ++cmp) {
auto x0 = 0.5f * (rx * rx + ry * ry - radial->fr * radial->fr) / (radial->dr * radial->fr + rx * radial->dx + ry * radial->dy);
auto src = MULTIPLY(A(A(_pixel(fill, x0))), a);
auto tmp = maskOp(src, *cmp, 0);
*dst = tmp + MULTIPLY(*dst, ~tmp);
rx += radial->a11;
ry += radial->a21;
}
} else {
float b, deltaB, det, deltaDet, deltaDeltaDet;
_calculateCoefficients(fill, x, y, b, deltaB, det, deltaDet, deltaDeltaDet);
for (uint32_t i = 0 ; i < len ; ++i, ++dst, ++cmp) {
auto src = MULTIPLY(A(_pixel(fill, sqrtf(det))), a);
auto tmp = maskOp(src, *cmp, 0);
*dst = tmp + MULTIPLY(*dst, ~tmp);
deltaDet += deltaDeltaDet;
b += deltaB;
}
}
}
void fillRadial(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a)
{
if (fill->radial.a < RADIAL_A_THRESHOLD) {
auto radial = &fill->radial;
auto rx = (x + 0.5f) * radial->a11 + (y + 0.5f) * radial->a12 + radial->a13 - radial->fx;
auto ry = (x + 0.5f) * radial->a21 + (y + 0.5f) * radial->a22 + radial->a23 - radial->fy;
if (a == 255) {
for (uint32_t i = 0; i < len; ++i, ++dst) {
auto x0 = 0.5f * (rx * rx + ry * ry - radial->fr * radial->fr) / (radial->dr * radial->fr + rx * radial->dx + ry * radial->dy);
auto tmp = op(_pixel(fill, x0), *dst, 255);
*dst = op2(tmp, *dst, 255);
rx += radial->a11;
ry += radial->a21;
}
} else {
for (uint32_t i = 0; i < len; ++i, ++dst) {
auto x0 = 0.5f * (rx * rx + ry * ry - radial->fr * radial->fr) / (radial->dr * radial->fr + rx * radial->dx + ry * radial->dy);
auto tmp = op(_pixel(fill, x0), *dst, 255);
auto tmp2 = op2(tmp, *dst, 255);
*dst = INTERPOLATE(tmp2, *dst, a);
rx += radial->a11;
ry += radial->a21;
}
}
} else {
float b, deltaB, det, deltaDet, deltaDeltaDet;
_calculateCoefficients(fill, x, y, b, deltaB, det, deltaDet, deltaDeltaDet);
if (a == 255) {
for (uint32_t i = 0 ; i < len ; ++i, ++dst) {
auto tmp = op(_pixel(fill, sqrtf(det) - b), *dst, 255);
*dst = op2(tmp, *dst, 255);
det += deltaDet;
deltaDet += deltaDeltaDet;
b += deltaB;
}
} else {
for (uint32_t i = 0 ; i < len ; ++i, ++dst) {
auto tmp = op(_pixel(fill, sqrtf(det) - b), *dst, 255);
auto tmp2 = op2(tmp, *dst, 255);
*dst = INTERPOLATE(tmp2, *dst, a);
det += deltaDet;
deltaDet += deltaDeltaDet;
b += deltaB;
}
}
}
}
void fillLinear(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwAlpha alpha, uint8_t csize, uint8_t opacity)
{
//Rotation
float rx = x + 0.5f;
float ry = y + 0.5f;
float t = (fill->linear.dx * rx + fill->linear.dy * ry + fill->linear.offset) * (GRADIENT_STOP_SIZE - 1);
float inc = (fill->linear.dx) * (GRADIENT_STOP_SIZE - 1);
if (opacity == 255) {
if (mathZero(inc)) {
auto color = _fixedPixel(fill, static_cast<int32_t>(t * FIXPT_SIZE));
for (uint32_t i = 0; i < len; ++i, ++dst, cmp += csize) {
*dst = opBlendNormal(color, *dst, alpha(cmp));
}
return;
}
auto vMax = static_cast<float>(INT32_MAX >> (FIXPT_BITS + 1));
auto vMin = -vMax;
auto v = t + (inc * len);
//we can use fixed point math
if (v < vMax && v > vMin) {
auto t2 = static_cast<int32_t>(t * FIXPT_SIZE);
auto inc2 = static_cast<int32_t>(inc * FIXPT_SIZE);
for (uint32_t j = 0; j < len; ++j, ++dst, cmp += csize) {
*dst = opBlendNormal(_fixedPixel(fill, t2), *dst, alpha(cmp));
t2 += inc2;
}
//we have to fallback to float math
} else {
uint32_t counter = 0;
while (counter++ < len) {
*dst = opBlendNormal(_pixel(fill, t / GRADIENT_STOP_SIZE), *dst, alpha(cmp));
++dst;
t += inc;
cmp += csize;
}
}
} else {
if (mathZero(inc)) {
auto color = _fixedPixel(fill, static_cast<int32_t>(t * FIXPT_SIZE));
for (uint32_t i = 0; i < len; ++i, ++dst, cmp += csize) {
*dst = opBlendNormal(color, *dst, MULTIPLY(alpha(cmp), opacity));
}
return;
}
auto vMax = static_cast<float>(INT32_MAX >> (FIXPT_BITS + 1));
auto vMin = -vMax;
auto v = t + (inc * len);
//we can use fixed point math
if (v < vMax && v > vMin) {
auto t2 = static_cast<int32_t>(t * FIXPT_SIZE);
auto inc2 = static_cast<int32_t>(inc * FIXPT_SIZE);
for (uint32_t j = 0; j < len; ++j, ++dst, cmp += csize) {
*dst = opBlendNormal(_fixedPixel(fill, t2), *dst, MULTIPLY(alpha(cmp), opacity));
t2 += inc2;
}
//we have to fallback to float math
} else {
uint32_t counter = 0;
while (counter++ < len) {
*dst = opBlendNormal(_pixel(fill, t / GRADIENT_STOP_SIZE), *dst, MULTIPLY(opacity, alpha(cmp)));
++dst;
t += inc;
cmp += csize;
}
}
}
}
void fillLinear(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, SwMask maskOp, uint8_t a)
{
//Rotation
float rx = x + 0.5f;
float ry = y + 0.5f;
float t = (fill->linear.dx * rx + fill->linear.dy * ry + fill->linear.offset) * (GRADIENT_STOP_SIZE - 1);
float inc = (fill->linear.dx) * (GRADIENT_STOP_SIZE - 1);
if (mathZero(inc)) {
auto src = MULTIPLY(a, A(_fixedPixel(fill, static_cast<int32_t>(t * FIXPT_SIZE))));
for (uint32_t i = 0; i < len; ++i, ++dst) {
*dst = maskOp(src, *dst, ~src);
}
return;
}
auto vMax = static_cast<float>(INT32_MAX >> (FIXPT_BITS + 1));
auto vMin = -vMax;
auto v = t + (inc * len);
//we can use fixed point math
if (v < vMax && v > vMin) {
auto t2 = static_cast<int32_t>(t * FIXPT_SIZE);
auto inc2 = static_cast<int32_t>(inc * FIXPT_SIZE);
for (uint32_t j = 0; j < len; ++j, ++dst) {
auto src = MULTIPLY(_fixedPixel(fill, t2), a);
*dst = maskOp(src, *dst, ~src);
t2 += inc2;
}
//we have to fallback to float math
} else {
uint32_t counter = 0;
while (counter++ < len) {
auto src = MULTIPLY(_pixel(fill, t / GRADIENT_STOP_SIZE), a);
*dst = maskOp(src, *dst, ~src);
++dst;
t += inc;
}
}
}
void fillLinear(const SwFill* fill, uint8_t* dst, uint32_t y, uint32_t x, uint32_t len, uint8_t* cmp, SwMask maskOp, uint8_t a)
{
//Rotation
float rx = x + 0.5f;
float ry = y + 0.5f;
float t = (fill->linear.dx * rx + fill->linear.dy * ry + fill->linear.offset) * (GRADIENT_STOP_SIZE - 1);
float inc = (fill->linear.dx) * (GRADIENT_STOP_SIZE - 1);
if (mathZero(inc)) {
auto src = A(_fixedPixel(fill, static_cast<int32_t>(t * FIXPT_SIZE)));
src = MULTIPLY(src, a);
for (uint32_t i = 0; i < len; ++i, ++dst, ++cmp) {
auto tmp = maskOp(src, *cmp, 0);
*dst = tmp + MULTIPLY(*dst, ~tmp);
}
return;
}
auto vMax = static_cast<float>(INT32_MAX >> (FIXPT_BITS + 1));
auto vMin = -vMax;
auto v = t + (inc * len);
//we can use fixed point math
if (v < vMax && v > vMin) {
auto t2 = static_cast<int32_t>(t * FIXPT_SIZE);
auto inc2 = static_cast<int32_t>(inc * FIXPT_SIZE);
for (uint32_t j = 0; j < len; ++j, ++dst, ++cmp) {
auto src = MULTIPLY(a, A(_fixedPixel(fill, t2)));
auto tmp = maskOp(src, *cmp, 0);
*dst = tmp + MULTIPLY(*dst, ~tmp);
t2 += inc2;
}
//we have to fallback to float math
} else {
uint32_t counter = 0;
while (counter++ < len) {
auto src = MULTIPLY(A(_pixel(fill, t / GRADIENT_STOP_SIZE)), a);
auto tmp = maskOp(src, *cmp, 0);
*dst = tmp + MULTIPLY(*dst, ~tmp);
++dst;
++cmp;
t += inc;
}
}
}
void fillLinear(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, uint8_t a)
{
//Rotation
float rx = x + 0.5f;
float ry = y + 0.5f;
float t = (fill->linear.dx * rx + fill->linear.dy * ry + fill->linear.offset) * (GRADIENT_STOP_SIZE - 1);
float inc = (fill->linear.dx) * (GRADIENT_STOP_SIZE - 1);
if (mathZero(inc)) {
auto color = _fixedPixel(fill, static_cast<int32_t>(t * FIXPT_SIZE));
for (uint32_t i = 0; i < len; ++i, ++dst) {
*dst = op(color, *dst, a);
}
return;
}
auto vMax = static_cast<float>(INT32_MAX >> (FIXPT_BITS + 1));
auto vMin = -vMax;
auto v = t + (inc * len);
//we can use fixed point math
if (v < vMax && v > vMin) {
auto t2 = static_cast<int32_t>(t * FIXPT_SIZE);
auto inc2 = static_cast<int32_t>(inc * FIXPT_SIZE);
for (uint32_t j = 0; j < len; ++j, ++dst) {
*dst = op(_fixedPixel(fill, t2), *dst, a);
t2 += inc2;
}
//we have to fallback to float math
} else {
uint32_t counter = 0;
while (counter++ < len) {
*dst = op(_pixel(fill, t / GRADIENT_STOP_SIZE), *dst, a);
++dst;
t += inc;
}
}
}
void fillLinear(const SwFill* fill, uint32_t* dst, uint32_t y, uint32_t x, uint32_t len, SwBlender op, SwBlender op2, uint8_t a)
{
//Rotation
float rx = x + 0.5f;
float ry = y + 0.5f;
float t = (fill->linear.dx * rx + fill->linear.dy * ry + fill->linear.offset) * (GRADIENT_STOP_SIZE - 1);
float inc = (fill->linear.dx) * (GRADIENT_STOP_SIZE - 1);
if (mathZero(inc)) {
auto color = _fixedPixel(fill, static_cast<int32_t>(t * FIXPT_SIZE));
if (a == 255) {
for (uint32_t i = 0; i < len; ++i, ++dst) {
auto tmp = op(color, *dst, a);
*dst = op2(tmp, *dst, 255);
}
} else {
for (uint32_t i = 0; i < len; ++i, ++dst) {
auto tmp = op(color, *dst, a);
auto tmp2 = op2(tmp, *dst, 255);
*dst = INTERPOLATE(tmp2, *dst, a);
}
}
return;
}
auto vMax = static_cast<float>(INT32_MAX >> (FIXPT_BITS + 1));
auto vMin = -vMax;
auto v = t + (inc * len);
if (a == 255) {
//we can use fixed point math
if (v < vMax && v > vMin) {
auto t2 = static_cast<int32_t>(t * FIXPT_SIZE);
auto inc2 = static_cast<int32_t>(inc * FIXPT_SIZE);
for (uint32_t j = 0; j < len; ++j, ++dst) {
auto tmp = op(_fixedPixel(fill, t2), *dst, 255);
*dst = op2(tmp, *dst, 255);
t2 += inc2;
}
//we have to fallback to float math
} else {
uint32_t counter = 0;
while (counter++ < len) {
auto tmp = op(_pixel(fill, t / GRADIENT_STOP_SIZE), *dst, 255);
*dst = op2(tmp, *dst, 255);
++dst;
t += inc;
}
}
} else {
//we can use fixed point math
if (v < vMax && v > vMin) {
auto t2 = static_cast<int32_t>(t * FIXPT_SIZE);
auto inc2 = static_cast<int32_t>(inc * FIXPT_SIZE);
for (uint32_t j = 0; j < len; ++j, ++dst) {
auto tmp = op(_fixedPixel(fill, t2), *dst, 255);
auto tmp2 = op2(tmp, *dst, 255);
*dst = INTERPOLATE(tmp2, *dst, a);
t2 += inc2;
}
//we have to fallback to float math
} else {
uint32_t counter = 0;
while (counter++ < len) {
auto tmp = op(_pixel(fill, t / GRADIENT_STOP_SIZE), *dst, 255);
auto tmp2 = op2(tmp, *dst, 255);
*dst = INTERPOLATE(tmp2, *dst, a);
++dst;
t += inc;
}
}
}
}
bool fillGenColorTable(SwFill* fill, const Fill* fdata, const Matrix* transform, SwSurface* surface, uint8_t opacity, bool ctable)
{
if (!fill) return false;
fill->spread = fdata->spread();
if (ctable) {
if (!_updateColorTable(fill, fdata, surface, opacity)) return false;
}
if (fdata->identifier() == TVG_CLASS_ID_LINEAR) {
return _prepareLinear(fill, static_cast<const LinearGradient*>(fdata), transform);
} else if (fdata->identifier() == TVG_CLASS_ID_RADIAL) {
return _prepareRadial(fill, static_cast<const RadialGradient*>(fdata), transform);
}
//LOG: What type of gradient?!
return false;
}
void fillReset(SwFill* fill)
{
if (fill->ctable) {
free(fill->ctable);
fill->ctable = nullptr;
}
fill->translucent = false;
}
void fillFree(SwFill* fill)
{
if (!fill) return;
if (fill->ctable) free(fill->ctable);
free(fill);
}