thorvg/src/loaders/lottie/tvgLottieModifier.cpp
2025-06-12 01:33:15 +02:00

597 lines
No EOL
22 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2024 - 2025 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "tvgLottieModifier.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
static bool _colinear(const Point* p)
{
return tvg::zero(*p - *(p + 1)) && tvg::zero(*(p + 2) - *(p + 3));
}
static void _roundCorner(Array<PathCommand>& cmds, Array<Point>& pts, Point& prev, Point& curr, Point& next, float r)
{
auto lenPrev = length(prev - curr);
auto rPrev = lenPrev > 0.0f ? 0.5f * std::min(lenPrev * 0.5f, r) / lenPrev : 0.0f;
auto lenNext = length(next - curr);
auto rNext = lenNext > 0.0f ? 0.5f * std::min(lenNext * 0.5f, r) / lenNext : 0.0f;
auto dPrev = rPrev * (curr - prev);
auto dNext = rNext * (curr - next);
pts.push(curr - 2.0f * dPrev);
pts.push(curr - dPrev);
pts.push(curr - dNext);
pts.push(curr - 2.0f * dNext);
cmds.push(PathCommand::LineTo);
cmds.push(PathCommand::CubicTo);
}
static bool _zero(Point& p1, Point& p2)
{
constexpr float epsilon = 1e-3f;
return fabsf(p1.x / p2.x - 1.0f) < epsilon && fabsf(p1.y / p2.y - 1.0f) < epsilon;
}
static bool _intersect(Line& line1, Line& line2, Point& intersection, bool& inside)
{
if (_zero(line1.pt2, line2.pt1)) {
intersection = line1.pt2;
inside = true;
return true;
}
constexpr float epsilon = 1e-3f;
float denom = (line1.pt2.x - line1.pt1.x) * (line2.pt2.y - line2.pt1.y) - (line1.pt2.y - line1.pt1.y) * (line2.pt2.x - line2.pt1.x);
if (fabsf(denom) < epsilon) return false;
float t = ((line2.pt1.x - line1.pt1.x) * (line2.pt2.y - line2.pt1.y) - (line2.pt1.y - line1.pt1.y) * (line2.pt2.x - line2.pt1.x)) / denom;
float u = ((line2.pt1.x - line1.pt1.x) * (line1.pt2.y - line1.pt1.y) - (line2.pt1.y - line1.pt1.y) * (line1.pt2.x - line1.pt1.x)) / denom;
intersection.x = line1.pt1.x + t * (line1.pt2.x - line1.pt1.x);
intersection.y = line1.pt1.y + t * (line1.pt2.y - line1.pt1.y);
inside = t >= -epsilon && t <= 1.0f + epsilon && u >= -epsilon && u <= 1.0f + epsilon;
return true;
}
static Line _offset(Point& p1, Point& p2, float offset)
{
auto scaledNormal = normal(p1, p2) * offset;
return {p1 + scaledNormal, p2 + scaledNormal};
}
static bool _clockwise(Point* pts, uint32_t n)
{
auto area = 0.0f;
for (uint32_t i = 0; i < n - 1; i++) {
area += cross(pts[i], pts[i + 1]);
}
area += cross(pts[n - 1], pts[0]);;
return area < 0.0f;
}
void LottieOffsetModifier::corner(RenderPath& out, Line& line, Line& nextLine, uint32_t movetoOutIndex, bool nextClose)
{
bool inside{};
Point intersect{};
if (_intersect(line, nextLine, intersect, inside)) {
if (inside) {
if (nextClose) out.pts[movetoOutIndex] = intersect;
out.pts.push(intersect);
} else {
out.pts.push(line.pt2);
if (join == StrokeJoin::Round) {
out.cmds.push(PathCommand::CubicTo);
out.pts.push((line.pt2 + intersect) * 0.5f);
out.pts.push((nextLine.pt1 + intersect) * 0.5f);
out.pts.push(nextLine.pt1);
} else if (join == StrokeJoin::Miter) {
auto norm = normal(line.pt1, line.pt2);
auto nextNorm = normal(nextLine.pt1, nextLine.pt2);
auto miterDirection = (norm + nextNorm) / length(norm + nextNorm);
out.cmds.push(PathCommand::LineTo);
if (1.0f <= miterLimit * fabsf(miterDirection.x * norm.x + miterDirection.y * norm.y)) out.pts.push(intersect);
else out.pts.push(nextLine.pt1);
} else {
out.cmds.push(PathCommand::LineTo);
out.pts.push(nextLine.pt1);
}
}
} else out.pts.push(line.pt2);
}
void LottieOffsetModifier::line(RenderPath& out, PathCommand* inCmds, uint32_t inCmdsCnt, Point* inPts, uint32_t& curPt, uint32_t curCmd, State& state, float offset, bool degenerated)
{
if (tvg::zero(inPts[curPt - 1] - inPts[curPt])) {
++curPt;
return;
}
if (inCmds[curCmd - 1] != PathCommand::LineTo) state.line = _offset(inPts[curPt - 1], inPts[curPt], offset);
if (state.moveto) {
out.cmds.push(PathCommand::MoveTo);
state.movetoOutIndex = out.pts.count;
out.pts.push(state.line.pt1);
state.firstLine = state.line;
state.moveto = false;
}
auto nonDegeneratedCubic = [&](uint32_t cmd, uint32_t pt) {
return inCmds[cmd] == PathCommand::CubicTo && !tvg::zero(inPts[pt] - inPts[pt + 1]) && !tvg::zero(inPts[pt + 2] - inPts[pt + 3]);
};
out.cmds.push(PathCommand::LineTo);
if (curCmd + 1 == inCmdsCnt || inCmds[curCmd + 1] == PathCommand::MoveTo || nonDegeneratedCubic(curCmd + 1, curPt + degenerated)) {
out.pts.push(state.line.pt2);
++curPt;
return;
}
Line nextLine = state.firstLine;
if (inCmds[curCmd + 1] == PathCommand::LineTo) nextLine = _offset(inPts[curPt + degenerated], inPts[curPt + 1 + degenerated], offset);
else if (inCmds[curCmd + 1] == PathCommand::CubicTo) nextLine = _offset(inPts[curPt + 1 + degenerated], inPts[curPt + 2 + degenerated], offset);
else if (inCmds[curCmd + 1] == PathCommand::Close && !_zero(inPts[curPt + degenerated], inPts[state.movetoInIndex + degenerated]))
nextLine = _offset(inPts[curPt + degenerated], inPts[state.movetoInIndex + degenerated], offset);
corner(out, state.line, nextLine, state.movetoOutIndex, inCmds[curCmd + 1] == PathCommand::Close);
state.line = nextLine;
++curPt;
}
static Point _center(const PathCommand* cmds, uint32_t cmdsCount, const Point* pts, TVG_UNUSED uint32_t ptsCount)
{
Point center{};
auto count = 0;
auto p = (Point*)pts;
for (uint32_t i = 0; i < cmdsCount; ++i) {
switch (cmds[i]) {
case PathCommand::MoveTo: {
++p;
break;
}
case PathCommand::CubicTo: {
center = center + *(p - 1) + *p + *(p + 1) + *(p + 2);
p += 3;
count += 4;
break;
}
case PathCommand::LineTo: {
center = center + *(p - 1) + *p;
++p;
count += 2;
break;
}
case PathCommand::Close: {
break;
}
}
}
return count > 0 ? center / (float)count : Point{0, 0};
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
bool LottieRoundnessModifier::modifyPath(PathCommand* inCmds, uint32_t inCmdsCnt, Point* inPts, uint32_t inPtsCnt, Matrix* transform, RenderPath& out)
{
auto& path = next ? (inCmds == buffer[0].cmds.data ? buffer[1] : buffer[0]) : out;
if (next) path.clear();
path.cmds.reserve(inCmdsCnt * 2);
path.pts.reserve((uint32_t)(inPtsCnt * 1.5));
auto pivot = path.pts.count;
uint32_t startIndex = 0;
for (uint32_t iCmds = 0, iPts = 0; iCmds < inCmdsCnt; ++iCmds) {
switch (inCmds[iCmds]) {
case PathCommand::MoveTo: {
startIndex = path.pts.count;
path.cmds.push(PathCommand::MoveTo);
path.pts.push(inPts[iPts++]);
break;
}
case PathCommand::CubicTo: {
if (iCmds < inCmdsCnt - 1 && _colinear(inPts + iPts - 1)) {
auto& prev = inPts[iPts - 1];
auto& curr = inPts[iPts + 2];
if (inCmds[iCmds + 1] == PathCommand::CubicTo && _colinear(inPts + iPts + 2)) {
_roundCorner(path.cmds, path.pts, prev, curr, inPts[iPts + 5], r);
iPts += 3;
break;
}
if (inCmds[iCmds + 1] == PathCommand::LineTo) {
_roundCorner(path.cmds, path.pts, prev, curr, inPts[iPts + 3], r);
iPts += 3;
break;
}
if (inCmds[iCmds + 1] == PathCommand::Close) {
_roundCorner(path.cmds, path.pts, prev, curr, inPts[2], r);
path.pts[startIndex] = path.pts.last();
iPts += 3;
break;
}
}
path.cmds.push(PathCommand::CubicTo);
path.pts.push(inPts[iPts++]);
path.pts.push(inPts[iPts++]);
path.pts.push(inPts[iPts++]);
break;
}
case PathCommand::LineTo: {
if (iCmds < inCmdsCnt - 1) {
auto& prev = inPts[iPts - 1];
auto& curr = inPts[iPts];
if (inCmds[iCmds + 1] == PathCommand::CubicTo && _colinear(inPts + iPts)) {
_roundCorner(path.cmds, path.pts, prev, curr, inPts[iPts + 3], r);
++iPts;
break;
}
if (inCmds[iCmds + 1] == PathCommand::LineTo) {
_roundCorner(path.cmds, path.pts, prev, curr, inPts[iPts + 1], r);
++iPts;
break;
}
if (inCmds[iCmds + 1] == PathCommand::Close) {
_roundCorner(path.cmds, path.pts, prev, curr, inPts[1], r);
path.pts[startIndex] = path.pts.last();
++iPts;
break;
}
}
path.cmds.push(PathCommand::LineTo);
path.pts.push(inPts[iPts++]);
break;
}
case PathCommand::Close: {
path.cmds.push(PathCommand::Close);
break;
}
default: break;
}
}
if (transform) {
for (auto i = pivot; i < path.pts.count; ++i) {
path.pts[i] *= *transform;
}
}
if (next) return next->modifyPath(path.cmds.data, path.cmds.count, path.pts.data, path.pts.count, transform, out);
return true;
}
bool LottieRoundnessModifier::modifyPolystar(RenderPath& in, RenderPath& out, float outerRoundness, bool hasRoundness)
{
constexpr auto ROUNDED_POLYSTAR_MAGIC_NUMBER = 0.47829f;
auto& path = next ? (&in == &buffer[0] ? buffer[1] : buffer[0]) : out;
if (next) path.clear();
auto len = length(in.pts[1] - in.pts[2]);
auto r = len > 0.0f ? ROUNDED_POLYSTAR_MAGIC_NUMBER * std::min(len * 0.5f, this->r) / len : 0.0f;
if (hasRoundness) {
path.cmds.grow((uint32_t)(1.5 * in.cmds.count));
path.pts.grow((uint32_t)(4.5 * in.cmds.count));
int start = 3 * tvg::zero(outerRoundness);
path.cmds.push(PathCommand::MoveTo);
path.pts.push(in.pts[start]);
for (uint32_t i = 1 + start; i < in.pts.count; i += 6) {
auto& prev = in.pts[i];
auto& curr = in.pts[i + 2];
auto& next = (i < in.pts.count - start) ? in.pts[i + 4] : in.pts[2];
auto& nextCtrl = (i < in.pts.count - start) ? in.pts[i + 5] : in.pts[3];
auto dNext = r * (curr - next);
auto dPrev = r * (curr - prev);
auto p0 = curr - 2.0f * dPrev;
auto p1 = curr - dPrev;
auto p2 = curr - dNext;
auto p3 = curr - 2.0f * dNext;
path.cmds.push(PathCommand::CubicTo);
path.pts.push(prev); path.pts.push(p0); path.pts.push(p0);
path.cmds.push(PathCommand::CubicTo);
path.pts.push(p1); path.pts.push(p2); path.pts.push(p3);
path.cmds.push(PathCommand::CubicTo);
path.pts.push(p3); path.pts.push(next); path.pts.push(nextCtrl);
}
} else {
path.cmds.grow(2 * in.cmds.count);
path.pts.grow(4 * in.cmds.count);
auto dPrev = r * (in.pts[1] - in.pts[0]);
auto p = in.pts[0] + 2.0f * dPrev;
path.cmds.push(PathCommand::MoveTo);
path.pts.push(p);
for (uint32_t i = 1; i < in.pts.count; ++i) {
auto& curr = in.pts[i];
auto& next = (i == in.pts.count - 1) ? in.pts[1] : in.pts[i + 1];
auto dNext = r * (curr - next);
auto p0 = curr - 2.0f * dPrev;
auto p1 = curr - dPrev;
auto p2 = curr - dNext;
auto p3 = curr - 2.0f * dNext;
path.cmds.push(PathCommand::LineTo);
path.pts.push(p0);
path.cmds.push(PathCommand::CubicTo);
path.pts.push(p1); path.pts.push(p2); path.pts.push(p3);
dPrev = -1.0f * dNext;
}
}
path.cmds.push(PathCommand::Close);
if (next) return next->modifyPolystar(path, out, outerRoundness, hasRoundness);
return true;
}
bool LottieRoundnessModifier::modifyRect(Point& size, float& r)
{
r = std::min(this->r, std::max(size.x, size.y) * 0.5f);
return true;
}
bool LottieOffsetModifier::modifyPath(PathCommand* inCmds, uint32_t inCmdsCnt, Point* inPts, uint32_t inPtsCnt, TVG_UNUSED Matrix* transform, RenderPath& out)
{
auto& path = next ? (inCmds == buffer[0].cmds.data ? buffer[1] : buffer[0]) : out;
if (next) path.clear();
path.cmds.reserve(inCmdsCnt * 2);
path.pts.reserve(inPtsCnt * (join == StrokeJoin::Round ? 4 : 2));
Array<Bezier> stack{5};
State state;
auto offset = _clockwise(inPts, inPtsCnt) ? this->offset : -this->offset;
auto threshold = 1.0f / fabsf(offset) + 1.0f;
for (uint32_t iCmd = 0, iPt = 0; iCmd < inCmdsCnt; ++iCmd) {
if (inCmds[iCmd] == PathCommand::MoveTo) {
state.moveto = true;
state.movetoInIndex = iPt++;
} else if (inCmds[iCmd] == PathCommand::LineTo) {
line(path, inCmds, inCmdsCnt, inPts, iPt, iCmd, state, offset, false);
} else if (inCmds[iCmd] == PathCommand::CubicTo) {
//cubic degenerated to a line
if (tvg::zero(inPts[iPt - 1] - inPts[iPt]) || tvg::zero(inPts[iPt + 1] - inPts[iPt + 2])) {
++iPt;
line(path, inCmds, inCmdsCnt, inPts, iPt, iCmd, state, offset, true);
++iPt;
continue;
}
stack.push({inPts[iPt - 1], inPts[iPt], inPts[iPt + 1], inPts[iPt + 2]});
while (!stack.empty()) {
auto& bezier = stack.last();
auto len = tvg::length(bezier.start - bezier.ctrl1) + tvg::length(bezier.ctrl1 - bezier.ctrl2) + tvg::length(bezier.ctrl2 - bezier.end);
if (len > threshold * bezier.length()) {
Bezier next;
bezier.split(0.5f, next);
stack.push(next);
continue;
}
stack.pop();
auto line1 = _offset(bezier.start, bezier.ctrl1, offset);
auto line2 = _offset(bezier.ctrl1, bezier.ctrl2, offset);
auto line3 = _offset(bezier.ctrl2, bezier.end, offset);
if (state.moveto) {
path.cmds.push(PathCommand::MoveTo);
state.movetoOutIndex = path.pts.count;
path.pts.push(line1.pt1);
state.firstLine = line1;
state.moveto = false;
}
bool inside{};
Point intersect{};
_intersect(line1, line2, intersect, inside);
path.pts.push(intersect);
_intersect(line2, line3, intersect, inside);
path.pts.push(intersect);
path.pts.push(line3.pt2);
path.cmds.push(PathCommand::CubicTo);
}
iPt += 3;
}
else {
if (!_zero(inPts[iPt - 1], inPts[state.movetoInIndex])) {
path.cmds.push(PathCommand::LineTo);
corner(path, state.line, state.firstLine, state.movetoOutIndex, true);
}
path.cmds.push(PathCommand::Close);
}
}
if (next) return next->modifyPath(path.cmds.data, path.cmds.count, path.pts.data, path.pts.count, transform, out);
return true;
}
bool LottieOffsetModifier::modifyPolystar(RenderPath& in, RenderPath& out, TVG_UNUSED float, TVG_UNUSED bool)
{
return modifyPath(in.cmds.data, in.cmds.count, in.pts.data, in.pts.count, nullptr, out);
}
bool LottieOffsetModifier::modifyRect(RenderPath& in, RenderPath& out)
{
return modifyPath(in.cmds.data, in.cmds.count, in.pts.data, in.pts.count, nullptr, out);
}
bool LottieOffsetModifier::modifyEllipse(Point& radius)
{
radius.x += offset;
radius.y += offset;
return true;
}
bool LottiePuckerBloatModifier::modifyPath(PathCommand* inCmds, uint32_t inCmdsCnt, Point* inPts, TVG_UNUSED uint32_t inPtsCnt, TVG_UNUSED Matrix* transform, RenderPath& out)
{
auto& path = next ? (inCmds == buffer[0].cmds.data ? buffer[1] : buffer[0]) : out;
if (next) path.clear();
path.cmds.reserve(inCmdsCnt);
path.pts.reserve(inPtsCnt);
auto center = _center(inCmds, inCmdsCnt, inPts, inPtsCnt);
auto a = amount * 0.01f;
auto pts = inPts;
for (uint32_t i = 0; i < inCmdsCnt; ++i) {
switch (inCmds[i]) {
case PathCommand::MoveTo: {
path.pts.push(*pts + (center - *pts) * a);
path.cmds.push(PathCommand::MoveTo);
++pts;
break;
}
case PathCommand::CubicTo: {
path.pts.push(*pts - (center - *pts) * a);
path.pts.push(*(pts + 1) - (center - *(pts + 1)) * a);
path.pts.push(*(pts + 2) + (center - *(pts + 2)) * a);
pts += 3;
path.cmds.push(PathCommand::CubicTo);
break;
}
case PathCommand::LineTo: {
path.pts.push(*(pts - 1) - (center - *(pts - 1)) * a);
path.pts.push(*pts - (center - *pts) * a);
path.pts.push(*pts + (center - *pts) * a);
path.cmds.push(PathCommand::CubicTo);
++pts;
break;
}
case PathCommand::Close: {
path.cmds.push(PathCommand::Close);
break;
}
}
}
if (next) return next->modifyPath(path.cmds.data, path.cmds.count, path.pts.data, path.pts.count, transform, out);
return true;
}
bool LottiePuckerBloatModifier::modifyPolystar(RenderPath& in, RenderPath& out, TVG_UNUSED float, TVG_UNUSED bool)
{
return modifyPath(in.cmds.data, in.cmds.count, in.pts.data, in.pts.count, nullptr, out);
}
bool LottiePuckerBloatModifier::modifyEllipse(RenderPath& path)
{
auto center = _center(path.cmds.data, path.cmds.count, path.pts.data, path.pts.count);
auto a = amount * 0.01f;
auto pts = path.pts.data;
for (uint32_t i = 0; i < path.cmds.count; ++i) {
switch (path.cmds[i]) {
case PathCommand::MoveTo: {
*pts = *pts + (center - *pts) * a;
++pts;
break;
}
case PathCommand::CubicTo: {
*pts = *pts - (center - *pts) * a;
*(pts + 1) = *(pts + 1) - (center - *(pts + 1)) * a;
*(pts + 2) = *(pts + 2) + (center - *(pts + 2)) * a;
pts += 3;
break;
}
default: break;
}
}
return true;
}
bool LottiePuckerBloatModifier::modifyRect(const RenderPath& in, RenderPath& out)
{
//sharp rectangle (5 cmds and 4 pts) the only case where the close command actually closes the shape
if (in.cmds.count == 5) {
auto center = (in.pts[0] + in.pts[1] + in.pts[2] + in.pts[3]) * 0.25f;
auto a = amount * 0.01f;
out.cmds.grow(6);
out.pts.grow(13);
auto cmds = out.cmds.end();
auto pts = out.pts.end();
cmds[0] = PathCommand::MoveTo;
cmds[1] = cmds[2] = cmds[3] = cmds[4] = PathCommand::CubicTo;
cmds[5] = PathCommand::Close;
for (int i = 0, j = 0; i < 4; ++i) {
pts[j++] = in.pts[i] + (center - in.pts[i]) * a;
pts[j++] = in.pts[i] - (center - in.pts[i]) * a;
pts[j++] = in.pts[(i + 1) % 4] - (center - in.pts[(i + 1) % 4]) * a;
}
pts[12] = in.pts[0] + (center - in.pts[0]) * a;
out.cmds.count += 6;
out.pts.count += 13;
return true;
}
return modifyPath(in.cmds.data, in.cmds.count, in.pts.data, in.pts.count, nullptr, out);
}