thorvg/src/renderer/wg_engine/tvgWgGeometry.h
Hermet Park ac08a9d6e7 wg_engine: introduced global vertexbuffer mempool & ++thread safety
Manage the global buffer memory for vertex and indexed vertex buffers,
increase the memory size incrementally twice by default and reduce
the default buffer size, which is not suitable for typical scenarios.

This could reduce the a bit stack memory usage and improve
the portability across systems where has the stack memory
limitation and potentially gaining performance enhancement
by avoiding brutal stack memory usage at the many function calls.

added the internal functions:

- WgVertexBuffer* mpoolReqVertexBuffer(float scale = 1.0f);
- WgIndexedVertexBuffer* mpoolReqIndexedVertexBuffer(float scale = 1.0f);
- void mpoolRetVertexBuffer(WgVertexBuffer* buffer);
- void mpoolRetIndexedVertexBuffer(WgIndexedVertexBuffer* buffer);

issue: https://github.com/thorvg/thorvg/issues/3159
2025-02-17 18:56:31 +09:00

546 lines
No EOL
18 KiB
C++
Executable file

/*
* Copyright (c) 2023 - 2025 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _TVG_WG_GEOMETRY_H_
#define _TVG_WG_GEOMETRY_H_
#include <cassert>
#include "tvgMath.h"
#include "tvgRender.h"
// default size of vertex and index buffers
#define WG_DEFAULT_BUFFER_SIZE 2048
struct WgVertexBuffer;
struct WgIndexedVertexBuffer;
struct WgGeometryBufferPool
{
private:
Array<WgVertexBuffer*> vbuffers;
Array<WgIndexedVertexBuffer*> ibuffers;
public:
~WgGeometryBufferPool();
WgVertexBuffer* reqVertexBuffer(float scale = 1.0f);
WgIndexedVertexBuffer* reqIndexedVertexBuffer(float scale = 1.0f);
void retVertexBuffer(WgVertexBuffer* buffer);
void retIndexedVertexBuffer(WgIndexedVertexBuffer* buffer);
static WgGeometryBufferPool* instance(); //return the shared buffer pool
};
// simple vertex buffer
struct WgVertexBuffer
{
Point* data; // vertex buffer
struct Distance {
float interval; // distance to previous point
float length; // distance to the first point through all previous points
} *dist;
uint32_t count = 0;
uint32_t reserved = WG_DEFAULT_BUFFER_SIZE;
float scale; // tesselation scale
bool closed = false;
// callback for external process of polyline
using onPolylineFn = std::function<void(const WgVertexBuffer& buff)>;
WgVertexBuffer(float scale = 1.0f) : scale(scale)
{
data = (Point*)malloc(sizeof(Point) * reserved);
dist = (Distance*)malloc(sizeof(Distance) * reserved);
}
~WgVertexBuffer()
{
free(data);
free(dist);
}
// reset buffer
void reset(float scale)
{
count = 0;
closed = false;
this->scale = scale;
}
// get the last point with optional index offset from the end
Point last(size_t offset = 0) const
{
return data[count - offset - 1];
}
// get the last distance with optional index offset from the end
float lastDist(size_t offset = 0) const
{
return dist[count - offset - 1].interval;
}
// get total length
float total() const
{
return (count == 0) ? 0.0f : dist[count-1].length;
}
// get next vertex index by length using binary search
size_t getIndexByLength(float len) const
{
if (count <= 1) return 0;
size_t left = 0;
size_t right = count - 1;
while (left <= right) {
size_t mid = left + (right - left) / 2;
if (dist[mid].length == len) return mid;
else if (dist[mid].length < len) left = mid + 1;
else right = mid - 1;
}
return right + 1;
}
// get min and max values of the buffer
void getMinMax(Point& pmin, Point& pmax) const
{
if (count == 0) return;
pmax = pmin = data[0];
for (size_t i = 1; i < count; i++) {
pmin = min(pmin, data[i]);
pmax = max(pmax, data[i]);
}
}
// update points distancess to the prev point and total length
void updateDistances()
{
if (count == 0) return;
dist[0].interval = 0.0f;
dist[0].length = 0.0f;
for (size_t i = 1; i < count; i++) {
dist[i].interval = tvg::length(data[i-1] - data[i]);
dist[i].length = dist[i-1].length + dist[i].interval;
}
}
// close vertex buffer
void close()
{
// check if last point is not to close to the first point
if (!tvg::zero(length2(data[0] - last()))) {
append(data[0]);
}
closed = true;
}
// append point
void append(const Point& p)
{
if (count >= reserved) {
reserved *= 2;
data = (Point*) realloc(data, reserved * sizeof(Point));
dist = (Distance*) realloc(dist, reserved * sizeof(Distance));
}
data[count++] = p;
}
// append source vertex buffer in index range from start to end (end not included)
void appendRange(const WgVertexBuffer& buff, size_t start_index, size_t end_index)
{
for (size_t i = start_index; i < end_index; i++) {
append(buff.data[i]);
}
}
// append circle (list of triangles)
void appendCircle(float radius)
{
// get approx circle length
float clen = 2.0f * radius * MATH_PI;
size_t nsegs = std::max((uint32_t)(clen * scale / 8), 16U);
// append circle^
Point prev { std::sin(0.0f) * radius, std::cos(0.0f) * radius };
for (size_t i = 1; i <= nsegs; i++) {
float t = (2.0f * MATH_PI * i) / nsegs;
Point curr { std::sin(t) * radius, std::cos(t) * radius };
append(Point{0.0f, 0.0f});
append(prev);
append(curr);
prev = curr;
}
}
// append cubic spline
void appendCubic(const Point& v0, const Point& v1, const Point& v2, const Point& v3)
{
// get approx cubic length
float clen = (tvg::length(v0 - v1) + tvg::length(v1 - v2) + tvg::length(v2 - v3));
size_t nsegs = std::max((uint32_t)(clen * scale / 16), 16U);
// append cubic
Bezier bezier{v0, v1, v2, v3};
for (size_t i = 1; i <= nsegs; i++) {
append(bezier.at((float)i / nsegs));
}
}
// decode path with callback for external prcesses
void decodePath(const RenderShape& rshape, bool update_dist, onPolylineFn onPolyline, bool trim = false)
{
// decode path
reset(scale);
PathCommand *cmds, *trimmedCmds = nullptr;
Point *pts, *trimmedPts = nullptr;
uint32_t cmdCnt{};
if (trim) {
RenderPath trimmedPath;
if (!rshape.stroke->trim.trim(rshape.path, trimmedPath)) return;
cmds = trimmedCmds = trimmedPath.cmds.data;
cmdCnt = trimmedPath.cmds.count;
pts = trimmedPts = trimmedPath.pts.data;
trimmedPath.cmds.data = nullptr;
trimmedPath.pts.data = nullptr;
} else {
cmds = rshape.path.cmds.data;
cmdCnt = rshape.path.cmds.count;
pts = rshape.path.pts.data;
}
size_t pntIndex = 0;
for (uint32_t i = 0; i < cmdCnt; i++) {
auto& cmd = cmds[i];
if (cmd == PathCommand::MoveTo) {
// after path decoding we need to update distances and total length
if (update_dist) updateDistances();
if ((onPolyline) && (count > 0)) onPolyline(*this);
reset(scale);
append(pts[pntIndex]);
pntIndex++;
} else if (cmd == PathCommand::LineTo) {
append(pts[pntIndex]);
pntIndex++;
} else if (cmd == PathCommand::Close) {
close();
// proceed path if close command is not the last command and next command is LineTo or CubicTo
if (i + 1 < cmdCnt && (cmds[i + 1] == PathCommand::LineTo || cmds[i + 1] == PathCommand::CubicTo)) {
// proceed current path
if (update_dist) updateDistances();
if ((count > 0) && (onPolyline)) onPolyline(*this);
// append closing point of current path as a first point of the new path
Point last_pt = last();
reset(scale);
append(last_pt);
}
} else if (cmd == PathCommand::CubicTo) {
// append tesselated cubic spline with scale param
appendCubic(data[count - 1], pts[pntIndex + 0], pts[pntIndex + 1], pts[pntIndex + 2]);
pntIndex += 3;
}
}
free(trimmedCmds);
free(trimmedPts);
// after path decoding we need to update distances and total length
if (update_dist) updateDistances();
if ((count > 0) && (onPolyline)) onPolyline(*this);
reset(scale);
}
};
struct WgIndexedVertexBuffer
{
Point* vbuff;
uint32_t* ibuff;
uint32_t vcount = 0, icount = 0;
size_t vreserved = WG_DEFAULT_BUFFER_SIZE;
size_t ireserved = WG_DEFAULT_BUFFER_SIZE * 2;
WgGeometryBufferPool* pool;
WgVertexBuffer* dashed; // intermediate buffer for stroke dashing
float scale;
WgIndexedVertexBuffer(WgGeometryBufferPool* pool, float scale = 1.0f) : pool(pool), scale(scale)
{
vbuff = (Point*)malloc(sizeof(Point) * vreserved);
ibuff = (uint32_t*)malloc(sizeof(uint32_t) * ireserved);
dashed = pool->reqVertexBuffer();
}
~WgIndexedVertexBuffer()
{
pool->retVertexBuffer(dashed);
free(vbuff);
free(ibuff);
}
// reset buffer
void reset(float scale)
{
icount = vcount = 0;
this->scale = scale;
}
void growIndex(size_t grow)
{
if (icount + grow >= ireserved) {
ireserved *= 2;
ibuff = (uint32_t*) realloc(ibuff, ireserved * sizeof(uint32_t));
}
}
void growVertex(size_t grow)
{
if (vcount + grow >= vreserved) {
vreserved *= 2;
vbuff = (Point*) realloc(vbuff, vreserved * sizeof(Point));
}
}
// get min and max values of the buffer
void getMinMax(Point& pmin, Point& pmax) const
{
if (vcount == 0) return;
pmax = pmin = vbuff[0];
for (size_t i = 1; i < vcount; i++) {
pmin = min(pmin, vbuff[i]);
pmax = max(pmax, vbuff[i]);
}
}
// append quad - two triangles formed from four points
void appendQuad(const Point& p0, const Point& p1, const Point& p2, const Point& p3)
{
growVertex(4);
vbuff[vcount+0] = p0;
vbuff[vcount+1] = p1;
vbuff[vcount+2] = p2;
vbuff[vcount+3] = p3;
growIndex(6);
ibuff[icount+0] = vcount + 0;
ibuff[icount+1] = vcount + 1;
ibuff[icount+2] = vcount + 2;
ibuff[icount+3] = vcount + 1;
ibuff[icount+4] = vcount + 3;
ibuff[icount+5] = vcount + 2;
vcount += 4;
icount += 6;
}
// dash buffer by pattern
void appendStrokesDashed(const WgVertexBuffer& buff, const RenderStroke* rstroke)
{
// dashed buffer
dashed->reset(scale);
// ignore single points polyline
if (buff.count < 2) return;
const float* dashPattern = rstroke->dashPattern;
size_t dashCnt = rstroke->dashCnt;
// starting state
uint32_t index_dash = 0;
float len_total = dashPattern[index_dash];
// get dashes length
float dashes_lenth{};
for (uint32_t i = 0; i < dashCnt * (dashCnt % 2 + 1); i++) {
dashes_lenth += dashPattern[i % dashCnt];
}
if (dashes_lenth == 0) return;
// normalize dash offset
float dashOffset = rstroke->dashOffset;
while(dashOffset < 0) dashOffset += dashes_lenth;
while(dashOffset > dashes_lenth) dashOffset -= dashes_lenth;
auto gap = false;
// scip dashes by offset
while(len_total < dashOffset) {
index_dash = (index_dash + 1) % dashCnt;
len_total += dashPattern[index_dash];
gap = !gap;
}
len_total -= dashOffset;
// iterate by polyline points
for (uint32_t i = 0; i < buff.count - 1; i++) {
// append current polyline point
if (!gap) dashed->append(buff.data[i]);
// move inside polyline segment
while(len_total < buff.dist[i+1].interval) {
// get current point
dashed->append(tvg::lerp(buff.data[i], buff.data[i+1], len_total / buff.dist[i+1].interval));
// update current state
index_dash = (index_dash + 1) % dashCnt;
len_total += dashPattern[index_dash];
// preceed stroke if dash
if (!gap) {
dashed->updateDistances();
appendStrokes(*dashed, rstroke);
dashed->reset(scale);
}
gap = !gap;
}
// update current subline length
len_total -= buff.dist[i+1].interval;
}
// draw last subline
if (!gap) {
dashed->append(buff.last());
dashed->updateDistances();
appendStrokes(*dashed, rstroke);
}
}
// append buffer with optional offset
void appendBuffer(const WgVertexBuffer& buff, Point offset = Point{0.0f, 0.0f})
{
growVertex(buff.count);
growIndex(buff.count);
for (uint32_t i = 0; i < buff.count; i++) {
vbuff[vcount + i] = buff.data[i] + offset;
ibuff[icount + i] = vcount + i;
}
vcount += buff.count;
icount += buff.count;
};
void appendLine(const Point& v0, const Point& v1, float dist, float halfWidth)
{
if(tvg::zero(dist)) return;
Point sub = v1 - v0;
Point nrm = {sub.y / dist * halfWidth, -sub.x / dist * halfWidth};
appendQuad(v0 - nrm, v0 + nrm, v1 - nrm, v1 + nrm);
}
void appendBevel(const Point& v0, const Point& v1, const Point& v2, float dist1, float dist2, float halfWidth)
{
if(tvg::zero(dist1) || tvg::zero(dist2)) return;
Point sub1 = v1 - v0;
Point sub2 = v2 - v1;
Point nrm1 {sub1.y / dist1 * halfWidth, -sub1.x / dist1 * halfWidth};
Point nrm2 {sub2.y / dist2 * halfWidth, -sub2.x / dist2 * halfWidth};
appendQuad(v1 - nrm1, v1 + nrm1, v1 - nrm2, v1 + nrm2);
}
void appendMiter(const Point& v0, const Point& v1, const Point& v2, float dist1, float dist2, float halfWidth, float miterLimit)
{
if(tvg::zero(dist1) || tvg::zero(dist2)) return;
auto sub1 = v1 - v0;
auto sub2 = v2 - v1;
auto nrm1 = Point{+sub1.y / dist1, -sub1.x / dist1};
auto nrm2 = Point{+sub2.y / dist2, -sub2.x / dist2};
auto offset1 = nrm1 * halfWidth;
auto offset2 = nrm2 * halfWidth;
auto nrm = nrm1 + nrm2;
normalize(nrm);
float cosine = dot(nrm, nrm1);
if (tvg::zero(cosine)) return;
float angle = std::acos(dot(nrm1, -nrm2));
if (tvg::zero(angle) || tvg::equal(angle, MATH_PI)) return;
float miterRatio = 1.0f / (std::sin(angle) * 0.5f);
if (miterRatio <= miterLimit) {
appendQuad(v1 + nrm * (halfWidth / cosine), v1 + offset2, v1 + offset1, v1);
appendQuad(v1 - nrm * (halfWidth / cosine), v1 - offset2, v1 - offset1, v1);
} else {
appendQuad(v1 - offset1, v1 + offset2, v1 - offset2, v1 + offset1);
}
}
void appendSquare(Point v0, Point v1, float dist, float halfWidth)
{
if(tvg::zero(dist)) return;
Point sub = v1 - v0;
Point offset = sub / dist * halfWidth;
Point nrm = {+offset.y, -offset.x};
appendQuad(v1 - nrm, v1 + nrm, v1 + offset - nrm, v1 + offset + nrm);
}
void appendStrokes(const WgVertexBuffer& buff, const RenderStroke* rstroke)
{
assert(rstroke);
// empty buffer gueard
if (buff.count < 2) return;
float halfWidth = rstroke->width * 0.5f;
// append core lines
for (size_t i = 1; i < buff.count; i++) {
appendLine(buff.data[i-1], buff.data[i], buff.dist[i].interval, halfWidth);
}
// append caps (square)
if ((rstroke->cap == StrokeCap::Square) && !buff.closed) {
appendSquare(buff.data[1], buff.data[0], buff.dist[1].interval, halfWidth);
appendSquare(buff.last(1), buff.last(0), buff.lastDist(0), halfWidth);
}
// append round joints and caps
if ((rstroke->join == StrokeJoin::Round) || (rstroke->cap == StrokeCap::Round)) {
// create mesh for circle
WgVertexBuffer circle;
circle.reset(buff.scale);
circle.appendCircle(halfWidth);
// append caps (round)
if (rstroke->cap == StrokeCap::Round) {
appendBuffer(circle, buff.data[0]);
// append ending cap if polyline is not closed
if (!buff.closed) appendBuffer(circle, buff.last());
}
// append joints (round)
if (rstroke->join == StrokeJoin::Round) {
for (size_t i = 1; i < buff.count - 1; i++) {
appendBuffer(circle, buff.data[i]);
}
if (buff.closed) appendBuffer(circle, buff.last());
}
}
// append closed endings
if (buff.closed) {
// close by bevel
if (rstroke->join == StrokeJoin::Bevel) {
appendBevel(buff.last(1), buff.data[0], buff.data[1], buff.lastDist(0), buff.dist[1].interval, halfWidth);
// close by mitter
} else if (rstroke->join == StrokeJoin::Miter) {
appendMiter(buff.last(1), buff.data[0], buff.data[1], buff.lastDist(0), buff.dist[1].interval, halfWidth, rstroke->miterlimit);
}
}
// append joints (bevel)
if (rstroke->join == StrokeJoin::Bevel) {
for (size_t i = 1; i < buff.count - 1; i++) {
appendBevel(buff.data[i-1], buff.data[i], buff.data[i+1], buff.dist[i].interval, buff.dist[i+1].interval, halfWidth);
}
// append joints (mitter)
} else if (rstroke->join == StrokeJoin::Miter) {
for (size_t i = 1; i < buff.count - 1; i++) {
appendMiter(buff.data[i-1], buff.data[i], buff.data[i+1], buff.dist[i].interval, buff.dist[i+1].interval, halfWidth, rstroke->miterlimit);
}
}
}
};
#endif // _TVG_WG_GEOMETRY_H_