thorvg/src/renderer/sw_engine/tvgSwRenderer.cpp
Hermet Park b77f3ca024 common: introduced designated memory allocators
Support the bindings to be more integrable with a system's coherent memory management.

Pleaes note that thorvg now only allow the desinated memory allocators here:
malloc -> tvg::malloc
calloc -> tvg::calloc
realloc -> tvg::realloc
free -> tvg::free

issue: https://github.com/thorvg/thorvg/issues/2652
2025-02-18 17:20:31 +09:00

846 lines
24 KiB
C++

/*
* Copyright (c) 2020 - 2025 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifdef THORVG_SW_OPENMP_SUPPORT
#include <omp.h>
#endif
#include <algorithm>
#include <atomic>
#include "tvgSwCommon.h"
#include "tvgTaskScheduler.h"
#include "tvgSwRenderer.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
static atomic<int32_t> initEngineCnt{};
static atomic<int32_t> rendererCnt{};
static SwMpool* globalMpool = nullptr;
static uint32_t threadsCnt = 0;
struct SwTask : Task
{
SwSurface* surface = nullptr;
SwMpool* mpool = nullptr;
SwBBox bbox; //Rendering Region
Matrix transform;
Array<RenderData> clips;
RenderUpdateFlag flags = RenderUpdateFlag::None;
uint8_t opacity;
bool pushed = false; //Pushed into task list?
bool disposed = false; //Disposed task?
RenderRegion bounds()
{
//Can we skip the synchronization?
done();
RenderRegion region;
//Range over?
region.x = bbox.min.x > 0 ? bbox.min.x : 0;
region.y = bbox.min.y > 0 ? bbox.min.y : 0;
region.w = bbox.max.x - region.x;
region.h = bbox.max.y - region.y;
if (region.w < 0) region.w = 0;
if (region.h < 0) region.h = 0;
return region;
}
virtual void dispose() = 0;
virtual bool clip(SwRle* target) = 0;
virtual ~SwTask() {}
};
struct SwShapeTask : SwTask
{
SwShape shape;
const RenderShape* rshape = nullptr;
bool clipper = false;
/* We assume that if the stroke width is greater than 2,
the shape's outline beneath the stroke could be adequately covered by the stroke drawing.
Therefore, antialiasing is disabled under this condition.
Additionally, the stroke style should not be dashed. */
bool antialiasing(float strokeWidth)
{
return strokeWidth < 2.0f || rshape->stroke->dashCnt > 0 || rshape->stroke->strokeFirst || rshape->strokeTrim() || rshape->stroke->color.a < 255;
}
float validStrokeWidth(bool clipper)
{
if (!rshape->stroke) return 0.0f;
auto width = rshape->stroke->width;
if (tvg::zero(width)) return 0.0f;
if (!clipper && (!rshape->stroke->fill && (MULTIPLY(rshape->stroke->color.a, opacity) == 0))) return 0.0f;
if (tvg::zero(rshape->stroke->trim.begin - rshape->stroke->trim.end)) return 0.0f;
return (width * sqrt(transform.e11 * transform.e11 + transform.e12 * transform.e12));
}
bool clip(SwRle* target) override
{
if (shape.strokeRle) return rleClip(target, shape.strokeRle);
if (shape.fastTrack) return rleClip(target, &bbox);
if (shape.rle) return rleClip(target, shape.rle);
return false;
}
void run(unsigned tid) override
{
//Invisible
if (opacity == 0 && !clipper) {
bbox.reset();
return;
}
auto strokeWidth = validStrokeWidth(clipper);
SwBBox renderRegion{};
auto visibleFill = false;
//This checks also for the case, if the invisible shape turned to visible by alpha.
auto prepareShape = !shapePrepared(&shape) && flags & (RenderUpdateFlag::Color | RenderUpdateFlag::Gradient);
//Shape
if (flags & (RenderUpdateFlag::Path | RenderUpdateFlag::Transform) || prepareShape) {
auto alpha = rshape->color.a;
alpha = MULTIPLY(alpha, opacity);
visibleFill = (alpha > 0 || rshape->fill);
shapeReset(&shape);
if (visibleFill || clipper) {
if (!shapePrepare(&shape, rshape, transform, bbox, renderRegion, mpool, tid, clips.count > 0 ? true : false)) {
visibleFill = false;
renderRegion.reset();
}
}
}
//Fill
if (flags & (RenderUpdateFlag::Path |RenderUpdateFlag::Gradient | RenderUpdateFlag::Transform | RenderUpdateFlag::Color)) {
if (visibleFill || clipper) {
if (!shapeGenRle(&shape, rshape, antialiasing(strokeWidth))) goto err;
}
if (auto fill = rshape->fill) {
auto ctable = (flags & RenderUpdateFlag::Gradient) ? true : false;
if (ctable) shapeResetFill(&shape);
if (!shapeGenFillColors(&shape, fill, transform, surface, opacity, ctable)) goto err;
} else {
shapeDelFill(&shape);
}
}
//Stroke
if (flags & (RenderUpdateFlag::Path | RenderUpdateFlag::Stroke | RenderUpdateFlag::Transform)) {
if (strokeWidth > 0.0f) {
shapeResetStroke(&shape, rshape, transform);
if (!shapeGenStrokeRle(&shape, rshape, transform, bbox, renderRegion, mpool, tid)) goto err;
if (auto fill = rshape->strokeFill()) {
auto ctable = (flags & RenderUpdateFlag::GradientStroke) ? true : false;
if (ctable) shapeResetStrokeFill(&shape);
if (!shapeGenStrokeFillColors(&shape, fill, transform, surface, opacity, ctable)) goto err;
}
} else {
shapeDelStroke(&shape);
}
}
//Clear current task memorypool here if the clippers would use the same memory pool
shapeDelOutline(&shape, mpool, tid);
//Clip Path
ARRAY_FOREACH(p, clips) {
auto clipper = static_cast<SwTask*>(*p);
auto clipShapeRle = shape.rle ? clipper->clip(shape.rle) : true;
auto clipStrokeRle = shape.strokeRle ? clipper->clip(shape.strokeRle) : true;
if (!clipShapeRle && !clipStrokeRle) goto err;
}
bbox = renderRegion; //sync
return;
err:
bbox.reset();
shapeReset(&shape);
rleReset(shape.strokeRle);
shapeDelOutline(&shape, mpool, tid);
}
void dispose() override
{
shapeFree(&shape);
}
};
struct SwImageTask : SwTask
{
SwImage image;
RenderSurface* source; //Image source
bool clip(SwRle* target) override
{
TVGERR("SW_ENGINE", "Image is used as ClipPath?");
return true;
}
void run(unsigned tid) override
{
auto clipRegion = bbox;
//Convert colorspace if it's not aligned.
rasterConvertCS(source, surface->cs);
rasterPremultiply(source);
image.data = source->data;
image.w = source->w;
image.h = source->h;
image.stride = source->stride;
image.channelSize = source->channelSize;
//Invisible shape turned to visible by alpha.
if ((flags & (RenderUpdateFlag::Image | RenderUpdateFlag::Transform | RenderUpdateFlag::Color)) && (opacity > 0)) {
imageReset(&image);
if (!image.data || image.w == 0 || image.h == 0) goto end;
if (!imagePrepare(&image, transform, clipRegion, bbox, mpool, tid)) goto end;
if (clips.count > 0) {
if (!imageGenRle(&image, bbox, false)) goto end;
if (image.rle) {
//Clear current task memorypool here if the clippers would use the same memory pool
imageDelOutline(&image, mpool, tid);
ARRAY_FOREACH(p, clips) {
auto clipper = static_cast<SwTask*>(*p);
if (!clipper->clip(image.rle)) goto err;
}
return;
}
}
}
goto end;
err:
rleReset(image.rle);
end:
imageDelOutline(&image, mpool, tid);
}
void dispose() override
{
imageFree(&image);
}
};
static void _termEngine()
{
if (rendererCnt > 0) return;
mpoolTerm(globalMpool);
globalMpool = nullptr;
}
static void _renderFill(SwShapeTask* task, SwSurface* surface, uint8_t opacity)
{
if (auto fill = task->rshape->fill) {
rasterGradientShape(surface, &task->shape, fill, opacity);
} else {
RenderColor c;
task->rshape->fillColor(&c.r, &c.g, &c.b, &c.a);
c.a = MULTIPLY(opacity, c.a);
if (c.a > 0) rasterShape(surface, &task->shape, c);
}
}
static void _renderStroke(SwShapeTask* task, SwSurface* surface, uint8_t opacity)
{
if (auto strokeFill = task->rshape->strokeFill()) {
rasterGradientStroke(surface, &task->shape, strokeFill, opacity);
} else {
RenderColor c;
if (task->rshape->strokeFill(&c.r, &c.g, &c.b, &c.a)) {
c.a = MULTIPLY(opacity, c.a);
if (c.a > 0) rasterStroke(surface, &task->shape, c);
}
}
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
SwRenderer::~SwRenderer()
{
clearCompositors();
delete(surface);
if (!sharedMpool) mpoolTerm(mpool);
--rendererCnt;
if (rendererCnt == 0 && initEngineCnt == 0) _termEngine();
}
bool SwRenderer::clear()
{
if (surface) return rasterClear(surface, 0, 0, surface->w, surface->h);
return false;
}
bool SwRenderer::sync()
{
ARRAY_FOREACH(p, tasks) {
if ((*p)->disposed) {
delete(*p);
} else {
(*p)->done();
(*p)->pushed = false;
}
}
tasks.clear();
return true;
}
RenderRegion SwRenderer::viewport()
{
return vport;
}
bool SwRenderer::viewport(const RenderRegion& vp)
{
vport = vp;
return true;
}
bool SwRenderer::target(pixel_t* data, uint32_t stride, uint32_t w, uint32_t h, ColorSpace cs)
{
if (!data || stride == 0 || w == 0 || h == 0 || w > stride) return false;
clearCompositors();
if (!surface) surface = new SwSurface;
surface->data = data;
surface->stride = stride;
surface->w = w;
surface->h = h;
surface->cs = cs;
surface->channelSize = CHANNEL_SIZE(cs);
surface->premultiplied = true;
return rasterCompositor(surface);
}
bool SwRenderer::preUpdate()
{
return true;
}
bool SwRenderer::postUpdate()
{
return true;
}
bool SwRenderer::preRender()
{
return true;
}
void SwRenderer::clearCompositors()
{
//Free Composite Caches
ARRAY_FOREACH(p, compositors) {
tvg::free((*p)->compositor->image.data);
delete((*p)->compositor);
delete(*p);
}
compositors.reset();
}
bool SwRenderer::postRender()
{
//Unmultiply alpha if needed
if (surface->cs == ColorSpace::ABGR8888S || surface->cs == ColorSpace::ARGB8888S) {
rasterUnpremultiply(surface);
}
ARRAY_FOREACH(p, tasks) {
if ((*p)->disposed) delete(*p);
else (*p)->pushed = false;
}
tasks.clear();
return true;
}
bool SwRenderer::renderImage(RenderData data)
{
auto task = static_cast<SwImageTask*>(data);
task->done();
if (task->opacity == 0) return true;
return rasterImage(surface, &task->image, task->transform, task->bbox, task->opacity);
}
bool SwRenderer::renderShape(RenderData data)
{
auto task = static_cast<SwShapeTask*>(data);
if (!task) return false;
task->done();
if (task->opacity == 0) return true;
//Main raster stage
if (task->rshape->stroke && task->rshape->stroke->strokeFirst) {
_renderStroke(task, surface, task->opacity);
_renderFill(task, surface, task->opacity);
} else {
_renderFill(task, surface, task->opacity);
_renderStroke(task, surface, task->opacity);
}
return true;
}
bool SwRenderer::blend(BlendMethod method)
{
if (surface->blendMethod == method) return true;
surface->blendMethod = method;
switch (method) {
case BlendMethod::Normal:
surface->blender = nullptr;
break;
case BlendMethod::Multiply:
surface->blender = opBlendMultiply;
break;
case BlendMethod::Screen:
surface->blender = opBlendScreen;
break;
case BlendMethod::Overlay:
surface->blender = opBlendOverlay;
break;
case BlendMethod::Darken:
surface->blender = opBlendDarken;
break;
case BlendMethod::Lighten:
surface->blender = opBlendLighten;
break;
case BlendMethod::ColorDodge:
surface->blender = opBlendColorDodge;
break;
case BlendMethod::ColorBurn:
surface->blender = opBlendColorBurn;
break;
case BlendMethod::HardLight:
surface->blender = opBlendHardLight;
break;
case BlendMethod::SoftLight:
surface->blender = opBlendSoftLight;
break;
case BlendMethod::Difference:
surface->blender = opBlendDifference;
break;
case BlendMethod::Exclusion:
surface->blender = opBlendExclusion;
break;
case BlendMethod::Add:
surface->blender = opBlendAdd;
break;
default:
TVGLOG("SW_ENGINE", "Non supported blending option = %d", (int) method);
surface->blender = nullptr;
break;
}
return false;
}
RenderRegion SwRenderer::region(RenderData data)
{
return static_cast<SwTask*>(data)->bounds();
}
bool SwRenderer::beginComposite(RenderCompositor* cmp, MaskMethod method, uint8_t opacity)
{
if (!cmp) return false;
auto p = static_cast<SwCompositor*>(cmp);
p->method = method;
p->opacity = opacity;
//Current Context?
if (p->method != MaskMethod::None) {
surface = p->recoverSfc;
surface->compositor = p;
}
return true;
}
const RenderSurface* SwRenderer::mainSurface()
{
return surface;
}
SwSurface* SwRenderer::request(int channelSize, bool square)
{
SwSurface* cmp = nullptr;
uint32_t w, h;
if (square) {
//Same Dimensional Size is demanded for the Post Processing Fast Flipping
w = h = std::max(surface->w, surface->h);
} else {
w = surface->w;
h = surface->h;
}
//Use cached data
ARRAY_FOREACH(p, compositors) {
auto cur = *p;
if (cur->compositor->valid && cur->compositor->image.channelSize == channelSize) {
if (w == cur->w && h == cur->h) {
cmp = *p;
break;
}
}
}
//New Composition
if (!cmp) {
//Inherits attributes from main surface
cmp = new SwSurface(surface);
cmp->compositor = new SwCompositor;
cmp->compositor->image.data = tvg::malloc<pixel_t*>(channelSize * w * h);
cmp->w = cmp->compositor->image.w = w;
cmp->h = cmp->compositor->image.h = h;
cmp->stride = cmp->compositor->image.stride = w;
cmp->compositor->image.direct = true;
cmp->compositor->valid = true;
cmp->channelSize = cmp->compositor->image.channelSize = channelSize;
compositors.push(cmp);
}
//Sync. This may have been modified by post-processing.
cmp->data = cmp->compositor->image.data;
return cmp;
}
RenderCompositor* SwRenderer::target(const RenderRegion& region, ColorSpace cs, CompositionFlag flags)
{
auto x = region.x;
auto y = region.y;
auto w = region.w;
auto h = region.h;
auto sw = static_cast<int32_t>(surface->w);
auto sh = static_cast<int32_t>(surface->h);
//Out of boundary
if (x >= sw || y >= sh || x + w < 0 || y + h < 0) return nullptr;
auto cmp = request(CHANNEL_SIZE(cs), (flags & CompositionFlag::PostProcessing));
//Boundary Check
if (x < 0) x = 0;
if (y < 0) y = 0;
if (x + w > sw) w = (sw - x);
if (y + h > sh) h = (sh - y);
if (w == 0 || h == 0) return nullptr;
cmp->compositor->recoverSfc = surface;
cmp->compositor->recoverCmp = surface->compositor;
cmp->compositor->valid = false;
cmp->compositor->bbox.min.x = x;
cmp->compositor->bbox.min.y = y;
cmp->compositor->bbox.max.x = x + w;
cmp->compositor->bbox.max.y = y + h;
/* TODO: Currently, only blending might work.
Blending and composition must be handled together. */
auto color = (surface->blender && !surface->compositor) ? 0x00ffffff : 0x00000000;
rasterClear(cmp, x, y, w, h, color);
//Switch render target
surface = cmp;
return cmp->compositor;
}
bool SwRenderer::endComposite(RenderCompositor* cmp)
{
if (!cmp) return false;
auto p = static_cast<SwCompositor*>(cmp);
//Recover Context
surface = p->recoverSfc;
surface->compositor = p->recoverCmp;
//only invalid (currently used) surface can be composited
if (p->valid) return true;
p->valid = true;
//Default is alpha blending
if (p->method == MaskMethod::None) {
Matrix m = {1, 0, 0, 0, 1, 0, 0, 0, 1};
return rasterImage(surface, &p->image, m, p->bbox, p->opacity);
}
return true;
}
void SwRenderer::prepare(RenderEffect* effect, const Matrix& transform)
{
switch (effect->type) {
case SceneEffect::GaussianBlur: effectGaussianBlurUpdate(static_cast<RenderEffectGaussianBlur*>(effect), transform); break;
case SceneEffect::DropShadow: effectDropShadowUpdate(static_cast<RenderEffectDropShadow*>(effect), transform); break;
case SceneEffect::Fill: effectFillUpdate(static_cast<RenderEffectFill*>(effect)); break;
case SceneEffect::Tint: effectTintUpdate(static_cast<RenderEffectTint*>(effect)); break;
case SceneEffect::Tritone: effectTritoneUpdate(static_cast<RenderEffectTritone*>(effect)); break;
default: break;
}
}
bool SwRenderer::region(RenderEffect* effect)
{
switch (effect->type) {
case SceneEffect::GaussianBlur: return effectGaussianBlurRegion(static_cast<RenderEffectGaussianBlur*>(effect));
case SceneEffect::DropShadow: return effectDropShadowRegion(static_cast<RenderEffectDropShadow*>(effect));
default: return false;
}
}
bool SwRenderer::render(RenderCompositor* cmp, const RenderEffect* effect, bool direct)
{
auto p = static_cast<SwCompositor*>(cmp);
if (p->image.channelSize != sizeof(uint32_t)) {
TVGERR("SW_ENGINE", "Not supported grayscale Gaussian Blur!");
return false;
}
switch (effect->type) {
case SceneEffect::GaussianBlur: {
return effectGaussianBlur(p, request(surface->channelSize, true), static_cast<const RenderEffectGaussianBlur*>(effect));
}
case SceneEffect::DropShadow: {
auto cmp1 = request(surface->channelSize, true);
cmp1->compositor->valid = false;
auto cmp2 = request(surface->channelSize, true);
SwSurface* surfaces[] = {cmp1, cmp2};
auto ret = effectDropShadow(p, surfaces, static_cast<const RenderEffectDropShadow*>(effect), direct);
cmp1->compositor->valid = true;
return ret;
}
case SceneEffect::Fill: {
return effectFill(p, static_cast<const RenderEffectFill*>(effect), direct);
}
case SceneEffect::Tint: {
return effectTint(p, static_cast<const RenderEffectTint*>(effect), direct);
}
case SceneEffect::Tritone: {
return effectTritone(p, static_cast<const RenderEffectTritone*>(effect), direct);
}
default: return false;
}
}
void SwRenderer::dispose(RenderEffect* effect)
{
tvg::free(effect->rd);
effect->rd = nullptr;
}
ColorSpace SwRenderer::colorSpace()
{
if (surface) return surface->cs;
else return ColorSpace::Unknown;
}
void SwRenderer::dispose(RenderData data)
{
auto task = static_cast<SwTask*>(data);
task->done();
task->dispose();
if (task->pushed) task->disposed = true;
else delete(task);
}
void* SwRenderer::prepareCommon(SwTask* task, const Matrix& transform, const Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags)
{
if (!surface) return task;
if (flags == RenderUpdateFlag::None) return task;
//TODO: Failed threading them. It would be better if it's possible.
//See: https://github.com/thorvg/thorvg/issues/1409
//Guarantee composition targets get ready.
ARRAY_FOREACH(p, clips) {
static_cast<SwTask*>(*p)->done();
}
task->clips = clips;
task->transform = transform;
//zero size?
if (task->transform.e11 == 0.0f && task->transform.e12 == 0.0f) return task; //zero width
if (task->transform.e21 == 0.0f && task->transform.e22 == 0.0f) return task; //zero height
task->opacity = opacity;
task->surface = surface;
task->mpool = mpool;
task->flags = flags;
task->bbox.min.x = std::max(static_cast<SwCoord>(0), static_cast<SwCoord>(vport.x));
task->bbox.min.y = std::max(static_cast<SwCoord>(0), static_cast<SwCoord>(vport.y));
task->bbox.max.x = std::min(static_cast<SwCoord>(surface->w), static_cast<SwCoord>(vport.x + vport.w));
task->bbox.max.y = std::min(static_cast<SwCoord>(surface->h), static_cast<SwCoord>(vport.y + vport.h));
if (!task->pushed) {
task->pushed = true;
tasks.push(task);
}
TaskScheduler::request(task);
return task;
}
RenderData SwRenderer::prepare(RenderSurface* surface, RenderData data, const Matrix& transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags)
{
//prepare task
auto task = static_cast<SwImageTask*>(data);
if (!task) task = new SwImageTask;
else task->done();
task->source = surface;
return prepareCommon(task, transform, clips, opacity, flags);
}
RenderData SwRenderer::prepare(const RenderShape& rshape, RenderData data, const Matrix& transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags, bool clipper)
{
//prepare task
auto task = static_cast<SwShapeTask*>(data);
if (!task) task = new SwShapeTask;
else task->done();
task->rshape = &rshape;
task->clipper = clipper;
return prepareCommon(task, transform, clips, opacity, flags);
}
SwRenderer::SwRenderer()
{
if (TaskScheduler::onthread()) {
TVGLOG("SW_RENDERER", "Running on a non-dominant thread!, Renderer(%p)", this);
mpool = mpoolInit(threadsCnt);
sharedMpool = false;
} else {
mpool = globalMpool;
sharedMpool = true;
}
}
bool SwRenderer::init(uint32_t threads)
{
if ((initEngineCnt++) > 0) return true;
threadsCnt = threads;
//Share the memory pool among the renderer
globalMpool = mpoolInit(threads);
if (!globalMpool) {
--initEngineCnt;
return false;
}
return true;
}
int32_t SwRenderer::init()
{
#ifdef THORVG_SW_OPENMP_SUPPORT
omp_set_num_threads(TaskScheduler::threads());
#endif
return initEngineCnt;
}
bool SwRenderer::term()
{
if ((--initEngineCnt) > 0) return true;
initEngineCnt = 0;
_termEngine();
return true;
}
SwRenderer* SwRenderer::gen()
{
++rendererCnt;
return new SwRenderer();
}