thorvg/src/renderer/sw_engine/tvgSwRasterAvx.h
Hermet Park c617c9ed70 sw_engine: enable render region clipping during rendering
Implemented support for clipping shapes and images using a render region
bounding box at render time. This allows partial drawing of content,
laying the groundwork for upcoming partial rendering functionality.

for fast access of the drawing region from the linear rle data,
we introduced the binary search for begin/end of rle instead of
additional y index buffer.

There is a reason for not using a y-index buffer:
the shapes in the RLE are not single, continuous shapes
but multiple shapes scattered across the space.

which means that we need a double-associated data structure
per shapes for y indexing, and this data preparation wouldn't be
cheaper enough than realtime binary search especially animated data.

This also helps for current clipping performance by utilizing
the introduced fast-clipping region access.

issue: https://github.com/thorvg/thorvg/issues/1747
2025-06-03 20:11:58 +09:00

234 lines
8.6 KiB
C

/*
* Copyright (c) 2021 - 2025 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifdef THORVG_AVX_VECTOR_SUPPORT
#include <immintrin.h>
#define N_32BITS_IN_128REG 4
#define N_32BITS_IN_256REG 8
static inline __m128i ALPHA_BLEND(__m128i c, __m128i a)
{
//1. set the masks for the A/G and R/B channels
auto AG = _mm_set1_epi32(0xff00ff00);
auto RB = _mm_set1_epi32(0x00ff00ff);
//2. mask the alpha vector - originally quartet [a, a, a, a]
auto aAG = _mm_and_si128(a, AG);
auto aRB = _mm_and_si128(a, RB);
//3. calculate the alpha blending of the 2nd and 4th channel
//- mask the color vector
//- multiply it by the masked alpha vector
//- add the correction to compensate bit shifting used instead of dividing by 255
//- shift bits - corresponding to division by 256
auto even = _mm_and_si128(c, RB);
even = _mm_mullo_epi16(even, aRB);
even =_mm_add_epi16(even, RB);
even = _mm_srli_epi16(even, 8);
//4. calculate the alpha blending of the 1st and 3rd channel:
//- mask the color vector
//- multiply it by the corresponding masked alpha vector and store the high bits of the result
//- add the correction to compensate division by 256 instead of by 255 (next step)
//- remove the low 8 bits to mimic the division by 256
auto odd = _mm_and_si128(c, AG);
odd = _mm_mulhi_epu16(odd, aAG);
odd = _mm_add_epi16(odd, RB);
odd = _mm_and_si128(odd, AG);
//5. the final result
return _mm_or_si128(odd, even);
}
static void avxRasterGrayscale8(uint8_t* dst, uint8_t val, uint32_t offset, int32_t len)
{
dst += offset;
__m256i vecVal = _mm256_set1_epi8(val);
int32_t i = 0;
for (; i <= len - 32; i += 32) {
_mm256_storeu_si256((__m256i*)(dst + i), vecVal);
}
for (; i < len; ++i) {
dst[i] = val;
}
}
static void avxRasterPixel32(uint32_t *dst, uint32_t val, uint32_t offset, int32_t len)
{
//1. calculate how many iterations we need to cover the length
uint32_t iterations = len / N_32BITS_IN_256REG;
uint32_t avxFilled = iterations * N_32BITS_IN_256REG;
//2. set the beginning of the array
dst += offset;
//3. fill the octets
for (uint32_t i = 0; i < iterations; ++i, dst += N_32BITS_IN_256REG) {
_mm256_storeu_si256((__m256i*)dst, _mm256_set1_epi32(val));
}
//4. fill leftovers (in the first step we have to set the pointer to the place where the avx job is done)
int32_t leftovers = len - avxFilled;
while (leftovers--) *dst++ = val;
}
static bool avxRasterTranslucentRect(SwSurface* surface, const RenderRegion& bbox, const RenderColor& c)
{
auto h = bbox.h();
auto w = bbox.w();
//32bits channels
if (surface->channelSize == sizeof(uint32_t)) {
auto color = surface->join(c.r, c.g, c.b, c.a);
auto buffer = surface->buf32 + (bbox.min.y * surface->stride) + bbox.min.x;
uint32_t ialpha = 255 - c.a;
auto avxColor = _mm_set1_epi32(color);
auto avxIalpha = _mm_set1_epi8(ialpha);
for (uint32_t y = 0; y < h; ++y) {
auto dst = &buffer[y * surface->stride];
//1. fill the not aligned memory (for 128-bit registers a 16-bytes alignment is required)
auto notAligned = ((uintptr_t)dst & 0xf) / 4;
if (notAligned) {
notAligned = (N_32BITS_IN_128REG - notAligned > w ? w : N_32BITS_IN_128REG - notAligned);
for (uint32_t x = 0; x < notAligned; ++x, ++dst) {
*dst = color + ALPHA_BLEND(*dst, ialpha);
}
}
//2. fill the aligned memory - N_32BITS_IN_128REG pixels processed at once
uint32_t iterations = (w - notAligned) / N_32BITS_IN_128REG;
uint32_t avxFilled = iterations * N_32BITS_IN_128REG;
auto avxDst = (__m128i*)dst;
for (uint32_t x = 0; x < iterations; ++x, ++avxDst) {
*avxDst = _mm_add_epi32(avxColor, ALPHA_BLEND(*avxDst, avxIalpha));
}
//3. fill the remaining pixels
int32_t leftovers = w - notAligned - avxFilled;
dst += avxFilled;
while (leftovers--) {
*dst = color + ALPHA_BLEND(*dst, ialpha);
dst++;
}
}
//8bit grayscale
} else if (surface->channelSize == sizeof(uint8_t)) {
TVGLOG("SW_ENGINE", "Require AVX Optimization, Channel Size = %d", surface->channelSize);
auto buffer = surface->buf8 + (bbox.min.y * surface->stride) + bbox.min.x;
auto ialpha = ~c.a;
for (uint32_t y = 0; y < h; ++y) {
auto dst = &buffer[y * surface->stride];
for (uint32_t x = 0; x < w; ++x, ++dst) {
*dst = c.a + MULTIPLY(*dst, ialpha);
}
}
}
return true;
}
static bool avxRasterTranslucentRle(SwSurface* surface, const SwRle* rle, const RenderRegion& bbox, const RenderColor& c)
{
const SwSpan* end;
int32_t x, len;
//32bit channels
if (surface->channelSize == sizeof(uint32_t)) {
auto color = surface->join(c.r, c.g, c.b, c.a);
uint32_t src;
for (auto span = rle->fetch(bbox, &end); span < end; ++span) {
FETCH_BOUND(span, bbox);
span->fetch(bbox, x, len);
if (span->coverage < 255) src = ALPHA_BLEND(color, span->coverage);
else src = color;
auto dst = &surface->buf32[span->y * surface->stride + x];
auto ialpha = IA(src);
//1. fill the not aligned memory (for 128-bit registers a 16-bytes alignment is required)
int32_t notAligned = ((uintptr_t)dst & 0xf) / 4;
if (notAligned) {
notAligned = (N_32BITS_IN_128REG - notAligned > len ? len : N_32BITS_IN_128REG - notAligned);
for (auto x = 0; x < notAligned; ++x, ++dst) {
*dst = src + ALPHA_BLEND(*dst, ialpha);
}
}
//2. fill the aligned memory using avx - N_32BITS_IN_128REG pixels processed at once
//In order to avoid unnecessary avx variables declarations a check is made whether there are any iterations at all
int32_t iterations = (len - notAligned) / N_32BITS_IN_128REG;
int32_t avxFilled = 0;
if (iterations > 0) {
auto avxSrc = _mm_set1_epi32(src);
auto avxIalpha = _mm_set1_epi8(ialpha);
avxFilled = iterations * N_32BITS_IN_128REG;
auto avxDst = (__m128i*)dst;
for (auto x = 0; x < iterations; ++x, ++avxDst) {
*avxDst = _mm_add_epi32(avxSrc, ALPHA_BLEND(*avxDst, avxIalpha));
}
}
//3. fill the remaining pixels
auto leftovers = len - notAligned - avxFilled;
dst += avxFilled;
while (leftovers--) {
*dst = src + ALPHA_BLEND(*dst, ialpha);
dst++;
}
++span;
}
//8bit grayscale
} else if (surface->channelSize == sizeof(uint8_t)) {
TVGLOG("SW_ENGINE", "Require AVX Optimization, Channel Size = %d", surface->channelSize);
uint8_t src;
for (auto span = rle->fetch(bbox, &end); span < end; ++span) {
FETCH_BOUND(span, bbox);
span->fetch(bbox, x, len);
auto dst = &surface->buf8[span->y * surface->stride + x];
if (span->coverage < 255) src = MULTIPLY(span->coverage, c.a);
else src = c.a;
auto ialpha = ~c.a;
for (auto x = 0; x < len; ++x, ++dst) {
*dst = src + MULTIPLY(*dst, ialpha);
}
}
}
return true;
}
#endif