mirror of
https://github.com/thorvg/thorvg.git
synced 2025-06-09 06:04:03 +00:00

Replaced the transformation with a strong associated data field. This helps to reduce the binary size (-1k).
355 lines
No EOL
10 KiB
C++
355 lines
No EOL
10 KiB
C++
/*
|
|
* Copyright (c) 2021 - 2024 the ThorVG project. All rights reserved.
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "tvgMath.h"
|
|
|
|
#define BEZIER_EPSILON 1e-2f
|
|
|
|
|
|
/************************************************************************/
|
|
/* Internal Class Implementation */
|
|
/************************************************************************/
|
|
|
|
static float _lineLengthApprox(const Point& pt1, const Point& pt2)
|
|
{
|
|
/* approximate sqrt(x*x + y*y) using alpha max plus beta min algorithm.
|
|
With alpha = 1, beta = 3/8, giving results with the largest error less
|
|
than 7% compared to the exact value. */
|
|
Point diff = {pt2.x - pt1.x, pt2.y - pt1.y};
|
|
if (diff.x < 0) diff.x = -diff.x;
|
|
if (diff.y < 0) diff.y = -diff.y;
|
|
return (diff.x > diff.y) ? (diff.x + diff.y * 0.375f) : (diff.y + diff.x * 0.375f);
|
|
}
|
|
|
|
|
|
static float _lineLength(const Point& pt1, const Point& pt2)
|
|
{
|
|
Point diff = {pt2.x - pt1.x, pt2.y - pt1.y};
|
|
return sqrtf(diff.x * diff.x + diff.y * diff.y);
|
|
}
|
|
|
|
|
|
template<typename LengthFunc>
|
|
float _bezLength(const Bezier& cur, LengthFunc lineLengthFunc)
|
|
{
|
|
Bezier left, right;
|
|
auto len = lineLengthFunc(cur.start, cur.ctrl1) + lineLengthFunc(cur.ctrl1, cur.ctrl2) + lineLengthFunc(cur.ctrl2, cur.end);
|
|
auto chord = lineLengthFunc(cur.start, cur.end);
|
|
|
|
if (fabsf(len - chord) > BEZIER_EPSILON) {
|
|
cur.split(left, right);
|
|
return _bezLength(left, lineLengthFunc) + _bezLength(right, lineLengthFunc);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
|
|
template<typename LengthFunc>
|
|
float _bezAt(const Bezier& bz, float at, float length, LengthFunc lineLengthFunc)
|
|
{
|
|
auto biggest = 1.0f;
|
|
auto smallest = 0.0f;
|
|
auto t = 0.5f;
|
|
|
|
//just in case to prevent an infinite loop
|
|
if (at <= 0) return 0.0f;
|
|
if (at >= length) return 1.0f;
|
|
|
|
while (true) {
|
|
auto right = bz;
|
|
Bezier left;
|
|
right.split(t, left);
|
|
length = _bezLength(left, lineLengthFunc);
|
|
if (fabsf(length - at) < BEZIER_EPSILON || fabsf(smallest - biggest) < BEZIER_EPSILON) {
|
|
break;
|
|
}
|
|
if (length < at) {
|
|
smallest = t;
|
|
t = (t + biggest) * 0.5f;
|
|
} else {
|
|
biggest = t;
|
|
t = (smallest + t) * 0.5f;
|
|
}
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
/************************************************************************/
|
|
/* External Class Implementation */
|
|
/************************************************************************/
|
|
|
|
namespace tvg {
|
|
|
|
//https://en.wikipedia.org/wiki/Remez_algorithm
|
|
float atan2(float y, float x)
|
|
{
|
|
if (y == 0.0f && x == 0.0f) return 0.0f;
|
|
auto a = std::min(fabsf(x), fabsf(y)) / std::max(fabsf(x), fabsf(y));
|
|
auto s = a * a;
|
|
auto r = ((-0.0464964749f * s + 0.15931422f) * s - 0.327622764f) * s * a + a;
|
|
if (fabsf(y) > fabsf(x)) r = 1.57079637f - r;
|
|
if (x < 0) r = 3.14159274f - r;
|
|
if (y < 0) return -r;
|
|
return r;
|
|
}
|
|
|
|
|
|
bool inverse(const Matrix* m, Matrix* out)
|
|
{
|
|
auto det = m->e11 * (m->e22 * m->e33 - m->e32 * m->e23) -
|
|
m->e12 * (m->e21 * m->e33 - m->e23 * m->e31) +
|
|
m->e13 * (m->e21 * m->e32 - m->e22 * m->e31);
|
|
|
|
if (tvg::zero(det)) return false;
|
|
|
|
auto invDet = 1 / det;
|
|
|
|
out->e11 = (m->e22 * m->e33 - m->e32 * m->e23) * invDet;
|
|
out->e12 = (m->e13 * m->e32 - m->e12 * m->e33) * invDet;
|
|
out->e13 = (m->e12 * m->e23 - m->e13 * m->e22) * invDet;
|
|
out->e21 = (m->e23 * m->e31 - m->e21 * m->e33) * invDet;
|
|
out->e22 = (m->e11 * m->e33 - m->e13 * m->e31) * invDet;
|
|
out->e23 = (m->e21 * m->e13 - m->e11 * m->e23) * invDet;
|
|
out->e31 = (m->e21 * m->e32 - m->e31 * m->e22) * invDet;
|
|
out->e32 = (m->e31 * m->e12 - m->e11 * m->e32) * invDet;
|
|
out->e33 = (m->e11 * m->e22 - m->e21 * m->e12) * invDet;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool identity(const Matrix* m)
|
|
{
|
|
if (m->e11 != 1.0f || m->e12 != 0.0f || m->e13 != 0.0f ||
|
|
m->e21 != 0.0f || m->e22 != 1.0f || m->e23 != 0.0f ||
|
|
m->e31 != 0.0f || m->e32 != 0.0f || m->e33 != 1.0f) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void rotate(Matrix* m, float degree)
|
|
{
|
|
if (degree == 0.0f) return;
|
|
|
|
auto radian = degree / 180.0f * MATH_PI;
|
|
auto cosVal = cosf(radian);
|
|
auto sinVal = sinf(radian);
|
|
|
|
m->e12 = m->e11 * -sinVal;
|
|
m->e11 *= cosVal;
|
|
m->e21 = m->e22 * sinVal;
|
|
m->e22 *= cosVal;
|
|
}
|
|
|
|
|
|
Matrix operator*(const Matrix& lhs, const Matrix& rhs)
|
|
{
|
|
Matrix m;
|
|
|
|
m.e11 = lhs.e11 * rhs.e11 + lhs.e12 * rhs.e21 + lhs.e13 * rhs.e31;
|
|
m.e12 = lhs.e11 * rhs.e12 + lhs.e12 * rhs.e22 + lhs.e13 * rhs.e32;
|
|
m.e13 = lhs.e11 * rhs.e13 + lhs.e12 * rhs.e23 + lhs.e13 * rhs.e33;
|
|
|
|
m.e21 = lhs.e21 * rhs.e11 + lhs.e22 * rhs.e21 + lhs.e23 * rhs.e31;
|
|
m.e22 = lhs.e21 * rhs.e12 + lhs.e22 * rhs.e22 + lhs.e23 * rhs.e32;
|
|
m.e23 = lhs.e21 * rhs.e13 + lhs.e22 * rhs.e23 + lhs.e23 * rhs.e33;
|
|
|
|
m.e31 = lhs.e31 * rhs.e11 + lhs.e32 * rhs.e21 + lhs.e33 * rhs.e31;
|
|
m.e32 = lhs.e31 * rhs.e12 + lhs.e32 * rhs.e22 + lhs.e33 * rhs.e32;
|
|
m.e33 = lhs.e31 * rhs.e13 + lhs.e32 * rhs.e23 + lhs.e33 * rhs.e33;
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
bool operator==(const Matrix& lhs, const Matrix& rhs)
|
|
{
|
|
if (!tvg::equal(lhs.e11, rhs.e11) || !tvg::equal(lhs.e12, rhs.e12) || !tvg::equal(lhs.e13, rhs.e13) ||
|
|
!tvg::equal(lhs.e21, rhs.e21) || !tvg::equal(lhs.e22, rhs.e22) || !tvg::equal(lhs.e23, rhs.e23) ||
|
|
!tvg::equal(lhs.e31, rhs.e31) || !tvg::equal(lhs.e32, rhs.e32) || !tvg::equal(lhs.e33, rhs.e33)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
void operator*=(Point& pt, const Matrix& m)
|
|
{
|
|
auto tx = pt.x * m.e11 + pt.y * m.e12 + m.e13;
|
|
auto ty = pt.x * m.e21 + pt.y * m.e22 + m.e23;
|
|
pt.x = tx;
|
|
pt.y = ty;
|
|
}
|
|
|
|
|
|
Point operator*(const Point& pt, const Matrix& m)
|
|
{
|
|
auto tx = pt.x * m.e11 + pt.y * m.e12 + m.e13;
|
|
auto ty = pt.x * m.e21 + pt.y * m.e22 + m.e23;
|
|
return {tx, ty};
|
|
}
|
|
|
|
|
|
float Line::length() const
|
|
{
|
|
return _lineLength(pt1, pt2);
|
|
}
|
|
|
|
|
|
void Line::split(float at, Line& left, Line& right) const
|
|
{
|
|
auto len = length();
|
|
auto dx = ((pt2.x - pt1.x) / len) * at;
|
|
auto dy = ((pt2.y - pt1.y) / len) * at;
|
|
left.pt1 = pt1;
|
|
left.pt2.x = left.pt1.x + dx;
|
|
left.pt2.y = left.pt1.y + dy;
|
|
right.pt1 = left.pt2;
|
|
right.pt2 = pt2;
|
|
}
|
|
|
|
|
|
void Bezier::split(Bezier& left, Bezier& right) const
|
|
{
|
|
auto c = (ctrl1.x + ctrl2.x) * 0.5f;
|
|
left.ctrl1.x = (start.x + ctrl1.x) * 0.5f;
|
|
right.ctrl2.x = (ctrl2.x + end.x) * 0.5f;
|
|
left.start.x = start.x;
|
|
right.end.x = end.x;
|
|
left.ctrl2.x = (left.ctrl1.x + c) * 0.5f;
|
|
right.ctrl1.x = (right.ctrl2.x + c) * 0.5f;
|
|
left.end.x = right.start.x = (left.ctrl2.x + right.ctrl1.x) * 0.5f;
|
|
|
|
c = (ctrl1.y + ctrl2.y) * 0.5f;
|
|
left.ctrl1.y = (start.y + ctrl1.y) * 0.5f;
|
|
right.ctrl2.y = (ctrl2.y + end.y) * 0.5f;
|
|
left.start.y = start.y;
|
|
right.end.y = end.y;
|
|
left.ctrl2.y = (left.ctrl1.y + c) * 0.5f;
|
|
right.ctrl1.y = (right.ctrl2.y + c) * 0.5f;
|
|
left.end.y = right.start.y = (left.ctrl2.y + right.ctrl1.y) * 0.5f;
|
|
}
|
|
|
|
|
|
void Bezier::split(float at, Bezier& left, Bezier& right) const
|
|
{
|
|
right = *this;
|
|
auto t = right.at(at, right.length());
|
|
right.split(t, left);
|
|
}
|
|
|
|
|
|
float Bezier::length() const
|
|
{
|
|
return _bezLength(*this, _lineLength);
|
|
}
|
|
|
|
|
|
float Bezier::lengthApprox() const
|
|
{
|
|
return _bezLength(*this, _lineLengthApprox);
|
|
}
|
|
|
|
|
|
void Bezier::split(float at, Bezier& left)
|
|
{
|
|
left.start = start;
|
|
|
|
left.ctrl1.x = start.x + at * (ctrl1.x - start.x);
|
|
left.ctrl1.y = start.y + at * (ctrl1.y - start.y);
|
|
|
|
left.ctrl2.x = ctrl1.x + at * (ctrl2.x - ctrl1.x); //temporary holding spot
|
|
left.ctrl2.y = ctrl1.y + at * (ctrl2.y - ctrl1.y); //temporary holding spot
|
|
|
|
ctrl2.x = ctrl2.x + at * (end.x - ctrl2.x);
|
|
ctrl2.y = ctrl2.y + at * (end.y - ctrl2.y);
|
|
|
|
ctrl1.x = left.ctrl2.x + at * (ctrl2.x - left.ctrl2.x);
|
|
ctrl1.y = left.ctrl2.y + at * (ctrl2.y - left.ctrl2.y);
|
|
|
|
left.ctrl2.x = left.ctrl1.x + at * (left.ctrl2.x - left.ctrl1.x);
|
|
left.ctrl2.y = left.ctrl1.y + at * (left.ctrl2.y - left.ctrl1.y);
|
|
|
|
left.end.x = start.x = left.ctrl2.x + at * (ctrl1.x - left.ctrl2.x);
|
|
left.end.y = start.y = left.ctrl2.y + at * (ctrl1.y - left.ctrl2.y);
|
|
}
|
|
|
|
|
|
float Bezier::at(float at, float length) const
|
|
{
|
|
return _bezAt(*this, at, length, _lineLength);
|
|
}
|
|
|
|
|
|
float Bezier::atApprox(float at, float length) const
|
|
{
|
|
return _bezAt(*this, at, length, _lineLengthApprox);
|
|
}
|
|
|
|
|
|
Point Bezier::at(float t) const
|
|
{
|
|
Point cur;
|
|
auto it = 1.0f - t;
|
|
|
|
auto ax = start.x * it + ctrl1.x * t;
|
|
auto bx = ctrl1.x * it + ctrl2.x * t;
|
|
auto cx = ctrl2.x * it + end.x * t;
|
|
ax = ax * it + bx * t;
|
|
bx = bx * it + cx * t;
|
|
cur.x = ax * it + bx * t;
|
|
|
|
float ay = start.y * it + ctrl1.y * t;
|
|
float by = ctrl1.y * it + ctrl2.y * t;
|
|
float cy = ctrl2.y * it + end.y * t;
|
|
ay = ay * it + by * t;
|
|
by = by * it + cy * t;
|
|
cur.y = ay * it + by * t;
|
|
|
|
return cur;
|
|
}
|
|
|
|
|
|
float Bezier::angle(float t) const
|
|
{
|
|
if (t < 0 || t > 1) return 0;
|
|
|
|
//derivate
|
|
// p'(t) = 3 * (-(1-2t+t^2) * p0 + (1 - 4 * t + 3 * t^2) * p1 + (2 * t - 3 *
|
|
// t^2) * p2 + t^2 * p3)
|
|
float mt = 1.0f - t;
|
|
float d = t * t;
|
|
float a = -mt * mt;
|
|
float b = 1 - 4 * t + 3 * d;
|
|
float c = 2 * t - 3 * d;
|
|
|
|
Point pt ={a * start.x + b * ctrl1.x + c * ctrl2.x + d * end.x, a * start.y + b * ctrl1.y + c * ctrl2.y + d * end.y};
|
|
pt.x *= 3;
|
|
pt.y *= 3;
|
|
|
|
return rad2deg(tvg::atan2(pt.y, pt.x));
|
|
}
|
|
|
|
} |