sw_engine: refactoring the linear gradient rle rastering function

The translucent rastering function is split into 3 other (instead of if/else statement).
An additional function is introduced to decide which one of the 3 should be called.
This refactoring is done to preserve the convention used for all other rastering functs.
This commit is contained in:
Mira Grudzinska 2021-05-25 01:50:59 +02:00 committed by Hermet Park
parent f18fca5173
commit 7b931b5e32

View file

@ -741,83 +741,112 @@ static bool _rasterOpaqueRadialGradientRect(SwSurface* surface, const SwBBox& re
}
static bool _rasterTranslucentLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
static bool _translucentLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
{
if (fill->linear.len < FLT_EPSILON) return false;
auto buf = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
if (!buf) return false;
auto span = rle->spans;
auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
if (!buffer) return false;
if (surface->compositor) {
auto method = surface->compositor->method;
auto cbuffer = surface->compositor->image.data;
if (method == CompositeMethod::AlphaMask) {
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
fillFetchLinear(fill, buf, span->y, span->x, span->len);
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto cmp = &cbuffer[span->y * surface->stride + span->x];
auto src = buf;
if (span->coverage == 255) {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
} else {
auto ialpha = 255 - span->coverage;
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
}
}
return true;
} else if (method == CompositeMethod::InvAlphaMask) {
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
fillFetchLinear(fill, buf, span->y, span->x, span->len);
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto cmp = &cbuffer[span->y * surface->stride + span->x];
auto src = buf;
if (span->coverage == 255) {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
} else {
auto ialpha = 255 - span->coverage;
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
}
}
return true;
}
}
for (uint32_t i = 0; i < rle->size; ++i) {
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
auto dst = &surface->buffer[span->y * surface->stride + span->x];
fillFetchLinear(fill, buf, span->y, span->x, span->len);
fillFetchLinear(fill, buffer, span->y, span->x, span->len);
if (span->coverage == 255) {
for (uint32_t i = 0; i < span->len; ++i) {
dst[i] = buf[i] + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(buf[i]));
dst[i] = buffer[i] + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(buffer[i]));
}
} else {
for (uint32_t i = 0; i < span->len; ++i) {
auto tmp = ALPHA_BLEND(buf[i], span->coverage);
auto tmp = ALPHA_BLEND(buffer[i], span->coverage);
dst[i] = tmp + ALPHA_BLEND(dst[i], 255 - surface->blender.alpha(tmp));
}
}
++span;
}
return true;
}
static bool _translucentLinearGradientRleAlphaMask(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
{
if (fill->linear.len < FLT_EPSILON) return false;
auto span = rle->spans;
auto cbuffer = surface->compositor->image.data;
auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
if (!buffer) return false;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
fillFetchLinear(fill, buffer, span->y, span->x, span->len);
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto cmp = &cbuffer[span->y * surface->stride + span->x];
auto src = buffer;
if (span->coverage == 255) {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
} else {
auto ialpha = 255 - span->coverage;
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, surface->blender.alpha(*cmp));
tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
}
}
return true;
}
static bool _translucentLinearGradientRleInvAlphaMask(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
{
if (fill->linear.len < FLT_EPSILON) return false;
auto span = rle->spans;
auto cbuffer = surface->compositor->image.data;
auto buffer = static_cast<uint32_t*>(alloca(surface->w * sizeof(uint32_t)));
if (!buffer) return false;
for (uint32_t i = 0; i < rle->size; ++i, ++span) {
fillFetchLinear(fill, buffer, span->y, span->x, span->len);
auto dst = &surface->buffer[span->y * surface->stride + span->x];
auto cmp = &cbuffer[span->y * surface->stride + span->x];
auto src = buffer;
if (span->coverage == 255) {
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
} else {
auto ialpha = 255 - span->coverage;
for (uint32_t x = 0; x < span->len; ++x, ++dst, ++cmp, ++src) {
auto tmp = ALPHA_BLEND(*src, 255 - surface->blender.alpha(*cmp));
tmp = ALPHA_BLEND(tmp, span->coverage) + ALPHA_BLEND(*dst, ialpha);
*dst = tmp + ALPHA_BLEND(*dst, 255 - surface->blender.alpha(tmp));
}
}
}
return true;
}
static bool _rasterTranslucentLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
{
if (!rle) return false;
if (surface->compositor) {
if (surface->compositor->method == CompositeMethod::AlphaMask) {
return _translucentLinearGradientRleAlphaMask(surface, rle, fill);
}
if (surface->compositor->method == CompositeMethod::InvAlphaMask) {
return _translucentLinearGradientRleInvAlphaMask(surface, rle, fill);
}
}
return _translucentLinearGradientRle(surface, rle, fill);
}
static bool _rasterOpaqueLinearGradientRle(SwSurface* surface, const SwRleData* rle, const SwFill* fill)
{
if (fill->linear.len < FLT_EPSILON) return false;