thorvg/src/renderer/wg_engine/tvgWgRenderer.cpp
Hermet Park afeb7c024a renderer: add partial rendering support
Partial Rendering refers to a rendering technique where
only a portion of the scene or screen is updated, rather
than redrawing the entire output. It is commonly used as
a performance optimization strategy, focusing on redrawing
only the regions that have changed, often called dirty regions.

This introduces RenderDirtyRegion, which assists
in collecting a compact dirty region from render tasks.
Each backend can utilize this class to support efficient partial rendering.
This is implemented using a Line Sweep and Subdivision Merging O(NlogN).

The basic per-frame workflow is as follows:

1. RenderDirtyRegion::prepare() //Call this in Renderer::preRender().
2. RenderDirtyRegion::add() //Add all dirty paints for the frame before rendering.
3. RenderDirtyRegion::commit() //Generate the partial rendering region list before rendering.
4. RenderDirtyRegion::get() //Retrieve the current dirty region list and use it when drawing paints.
5. RenderDirtyRegion::clear() //Reset the state.

issue: https://github.com/thorvg/thorvg/issues/1747
2025-06-05 12:13:41 +09:00

671 lines
No EOL
21 KiB
C++

/*
* Copyright (c) 2023 - 2025 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <atomic>
#include "tvgTaskScheduler.h"
#include "tvgWgRenderer.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
static atomic<int32_t> rendererCnt{-1};
void WgRenderer::release()
{
// check for general context availability
if (!mContext.queue) return;
// dispose stored objects
disposeObjects();
// clear render data paint pools
mRenderDataShapePool.release(mContext);
mRenderDataPicturePool.release(mContext);
mRenderDataViewportPool.release(mContext);
mRenderDataEffectParamsPool.release(mContext);
WgMeshDataPool::gMeshDataPool->release(mContext);
// clear render pool
mRenderTargetPool.release(mContext);
// clear rendering tree stacks
mCompositorList.clear();
mRenderTargetStack.clear();
mRenderTargetRoot.release(mContext);
// release context handles
mCompositor.release(mContext);
mContext.release();
// release gpu handles
clearTargets();
}
void WgRenderer::disposeObjects()
{
ARRAY_FOREACH(p, mDisposeRenderDatas) {
auto renderData = (WgRenderDataPaint*)(*p);
if (renderData->type() == Type::Shape) {
mRenderDataShapePool.free(mContext, (WgRenderDataShape*)renderData);
} else {
mRenderDataPicturePool.free(mContext, (WgRenderDataPicture*)renderData);
}
}
mDisposeRenderDatas.clear();
}
void WgRenderer::releaseSurfaceTexture()
{
if (surfaceTexture.texture) {
wgpuTextureRelease(surfaceTexture.texture);
surfaceTexture.texture = nullptr;
}
}
void WgRenderer::clearTargets()
{
releaseSurfaceTexture();
if (surface) wgpuSurfaceUnconfigure(surface);
targetTexture = nullptr;
surface = nullptr;
mTargetSurface.stride = 0;
mTargetSurface.w = 0;
mTargetSurface.h = 0;
}
bool WgRenderer::surfaceConfigure(WGPUSurface surface, WgContext& context, uint32_t width, uint32_t height)
{
// store target surface properties
this->surface = surface;
if (width == 0 || height == 0 || !surface) return false;
// setup surface configuration
WGPUSurfaceConfiguration surfaceConfiguration {
.device = context.device,
.format = context.preferredFormat,
.usage = WGPUTextureUsage_RenderAttachment,
#ifdef __EMSCRIPTEN__
.alphaMode = WGPUCompositeAlphaMode_Premultiplied,
#endif
.width = width,
.height = height,
#ifdef __EMSCRIPTEN__
.presentMode = WGPUPresentMode_Fifo
#elif __linux__
#else
.presentMode = WGPUPresentMode_Immediate
#endif
};
wgpuSurfaceConfigure(surface, &surfaceConfiguration);
return true;
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
RenderData WgRenderer::prepare(const RenderShape& rshape, RenderData data, const Matrix& transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags, bool clipper)
{
// get or create render data shape
auto renderDataShape = (WgRenderDataShape*)data;
if (!renderDataShape)
renderDataShape = mRenderDataShapePool.allocate(mContext);
// update geometry
if ((!data) || (flags & (RenderUpdateFlag::Path | RenderUpdateFlag::Stroke))) {
renderDataShape->updateMeshes(mContext, rshape, transform, mBufferPool.pool);
}
// update paint settings
if ((!data) || (flags & (RenderUpdateFlag::Transform | RenderUpdateFlag::Blend))) {
renderDataShape->update(mContext, transform, mTargetSurface.cs, opacity);
renderDataShape->fillRule = rshape.rule;
}
// setup fill settings
renderDataShape->viewport = mViewport;
renderDataShape->opacity = opacity;
if (flags & RenderUpdateFlag::Gradient && rshape.fill) renderDataShape->renderSettingsShape.updateFill(mContext, rshape.fill);
else if (flags & RenderUpdateFlag::Color) renderDataShape->renderSettingsShape.updateColor(mContext, rshape.color);
if (rshape.stroke) {
if (flags & RenderUpdateFlag::GradientStroke && rshape.stroke->fill) renderDataShape->renderSettingsStroke.updateFill(mContext, rshape.stroke->fill);
else if (flags & RenderUpdateFlag::Stroke) renderDataShape->renderSettingsStroke.updateColor(mContext, rshape.stroke->color);
}
// store clips data
renderDataShape->updateClips(clips);
return renderDataShape;
}
RenderData WgRenderer::prepare(RenderSurface* surface, RenderData data, const Matrix& transform, Array<RenderData>& clips, uint8_t opacity, RenderUpdateFlag flags)
{
// get or create render data shape
auto renderDataPicture = (WgRenderDataPicture*)data;
if (!renderDataPicture)
renderDataPicture = mRenderDataPicturePool.allocate(mContext);
// update paint settings
renderDataPicture->viewport = mViewport;
renderDataPicture->opacity = opacity;
if (flags & (RenderUpdateFlag::Transform | RenderUpdateFlag::Blend)) {
renderDataPicture->update(mContext, transform, surface->cs, opacity);
}
// update image data
if (flags & (RenderUpdateFlag::Path | RenderUpdateFlag::Image)) {
renderDataPicture->updateSurface(mContext, surface);
}
// store clips data
renderDataPicture->updateClips(clips);
return renderDataPicture;
}
bool WgRenderer::preRender()
{
// invalidate context
if (mContext.invalid()) return false;
// reset stage data
mCompositor.reset(mContext);
// push root render target to the render tree stack
assert(mRenderTargetStack.count == 0);
mRenderTargetStack.push(&mRenderTargetRoot);
// create root compose settings
WgCompose* compose = new WgCompose();
compose->aabb = { { 0, 0 }, { (int32_t)mTargetSurface.w, (int32_t)mTargetSurface.h } };
compose->blend = BlendMethod::Normal;
compose->method = MaskMethod::None;
compose->opacity = 255;
mCompositorList.push(compose);
// create root scene
WgSceneTask* sceneTask = new WgSceneTask(&mRenderTargetRoot, compose, nullptr);
mRenderTaskList.push(sceneTask);
mSceneTaskStack.push(sceneTask);
return true;
}
bool WgRenderer::renderShape(RenderData data)
{
WgPaintTask* paintTask = new WgPaintTask((WgRenderDataPaint*)data, mBlendMethod);
WgSceneTask* sceneTask = mSceneTaskStack.last();
sceneTask->children.push(paintTask);
mRenderTaskList.push(paintTask);
mCompositor.requestShape((WgRenderDataShape*)data);
return true;
}
bool WgRenderer::renderImage(RenderData data)
{
WgPaintTask* paintTask = new WgPaintTask((WgRenderDataPaint*)data, mBlendMethod);
WgSceneTask* sceneTask = mSceneTaskStack.last();
sceneTask->children.push(paintTask);
mRenderTaskList.push(paintTask);
mCompositor.requestImage((WgRenderDataPicture*)data);
return true;
}
bool WgRenderer::postRender()
{
// flush stage data to gpu
mCompositor.flush(mContext);
// create command encoder for drawing
WGPUCommandEncoder commandEncoder = mContext.createCommandEncoder();
// run rendering (all the fun is here)
WgSceneTask* sceneTaskRoot = mSceneTaskStack.last();
sceneTaskRoot->run(mContext, mCompositor, commandEncoder);
// execute and release command encoder
mContext.submitCommandEncoder(commandEncoder);
mContext.releaseCommandEncoder(commandEncoder);
// clear the render tasks tree
mSceneTaskStack.pop();
assert(mSceneTaskStack.count == 0);
mRenderTargetStack.pop();
assert(mRenderTargetStack.count == 0);
ARRAY_FOREACH(p, mRenderTaskList) { delete (*p); };
mRenderTaskList.clear();
ARRAY_FOREACH(p, mCompositorList) { delete (*p); };
mCompositorList.clear();
ARRAY_FOREACH(p, mRenderDataViewportList)
mRenderDataViewportPool.free(mContext, *p);
mRenderDataViewportList.clear();
return true;
}
void WgRenderer::dispose(RenderData data) {
if (!mContext.queue) return;
ScopedLock lock(mDisposeKey);
mDisposeRenderDatas.push(data);
}
void WgRenderer::damage(TVG_UNUSED const RenderRegion& region)
{
//TODO:
}
RenderRegion WgRenderer::region(RenderData data)
{
auto renderData = (WgRenderDataPaint*)data;
if (renderData->type() == Type::Shape) {
auto& v1 = renderData->aabb.min;
auto& v2 = renderData->aabb.max;
return {{int32_t(nearbyint(v1.x)), int32_t(nearbyint(v1.y))}, {int32_t(nearbyint(v2.x)), int32_t(nearbyint(v2.y))}};
}
return {{0, 0}, {(int32_t)mTargetSurface.w, (int32_t)mTargetSurface.h}};
}
RenderRegion WgRenderer::viewport() {
return mViewport;
}
bool WgRenderer::viewport(const RenderRegion& vp)
{
mViewport = vp;
return true;
}
bool WgRenderer::blend(BlendMethod method)
{
mBlendMethod = method;
return true;
}
ColorSpace WgRenderer::colorSpace()
{
return ColorSpace::Unknown;
}
const RenderSurface* WgRenderer::mainSurface()
{
return &mTargetSurface;
}
bool WgRenderer::clear()
{
if (mContext.invalid()) return false;
//TODO: clear the current target buffer only if clear() is called
return true;
}
bool WgRenderer::sync()
{
if (mContext.invalid()) return false;
disposeObjects();
// if texture buffer used
WGPUTexture dstTexture = targetTexture;
if (surface) {
releaseSurfaceTexture();
wgpuSurfaceGetCurrentTexture(surface, &surfaceTexture);
dstTexture = surfaceTexture.texture;
}
// there is no external dest buffer
if (!dstTexture) return false;
// get external dest buffer
WGPUTextureView dstTextureView = mContext.createTextureView(dstTexture);
// create command encoder
WGPUCommandEncoder commandEncoder = mContext.createCommandEncoder();
// show root offscreen buffer
mCompositor.blit(mContext, commandEncoder, &mRenderTargetRoot, dstTextureView);
mContext.submitCommandEncoder(commandEncoder);
mContext.releaseCommandEncoder(commandEncoder);
// release dest buffer view
mContext.releaseTextureView(dstTextureView);
return true;
}
// render target handle
bool WgRenderer::target(WGPUDevice device, WGPUInstance instance, void* target, uint32_t width, uint32_t height, int type)
{
// release all existing handles
if (!instance || !device || !target) {
// release all handles
release();
return true;
}
// can not initialize renderer, give up
if (!instance || !device || !target || !width || !height)
return false;
// device or instance was changed, need to recreate all instances
if ((mContext.device != device) || (mContext.instance != instance)) {
// release all handles
release();
// initialize base rendering handles
mContext.initialize(instance, device);
// initialize render tree instances
mRenderTargetPool.initialize(mContext, width, height);
mRenderTargetRoot.initialize(mContext, width, height);
mCompositor.initialize(mContext, width, height);
// store target properties
mTargetSurface.stride = width;
mTargetSurface.w = width;
mTargetSurface.h = height;
// configure surface (must be called after context creation)
if (type == 0) {
surface = (WGPUSurface)target;
surfaceConfigure(surface, mContext, width, height);
} else targetTexture = (WGPUTexture)target;
return true;
}
// update render targets dimentions
if ((mTargetSurface.w != width) || (mTargetSurface.h != height) || (type == 0 ? (surface != (WGPUSurface)target) : (targetTexture != (WGPUTexture)target))) {
// release render tagets
mRenderTargetPool.release(mContext);
mRenderTargetRoot.release(mContext);
clearTargets();
mRenderTargetPool.initialize(mContext, width, height);
mRenderTargetRoot.initialize(mContext, width, height);
mCompositor.resize(mContext, width, height);
// store target properties
mTargetSurface.stride = width;
mTargetSurface.w = width;
mTargetSurface.h = height;
// configure surface (must be called after context creation)
if (type == 0) {
surface = (WGPUSurface)target;
surfaceConfigure(surface, mContext, width, height);
} else targetTexture = (WGPUTexture)target;
return true;
}
return true;
}
WgRenderer::WgRenderer()
{
if (TaskScheduler::onthread()) {
TVGLOG("WG_RENDERER", "Running on a non-dominant thread!, Renderer(%p)", this);
mBufferPool.pool = new WgGeometryBufferPool;
mBufferPool.individual = true;
} else {
mBufferPool.pool = WgGeometryBufferPool::instance();
}
++rendererCnt;
}
WgRenderer::~WgRenderer()
{
release();
if (mBufferPool.individual) delete(mBufferPool.pool);
--rendererCnt;
}
RenderCompositor* WgRenderer::target(const RenderRegion& region, TVG_UNUSED ColorSpace cs, TVG_UNUSED CompositionFlag flags)
{
// create and setup compose data
WgCompose* compose = new WgCompose();
compose->aabb = region;
if (flags & PostProcessing) {
compose->aabb = region;
compose->rdViewport = mRenderDataViewportPool.allocate(mContext);
compose->rdViewport->update(mContext, region);
mRenderDataViewportList.push(compose->rdViewport);
}
mCompositorList.push(compose);
return compose;
}
bool WgRenderer::beginComposite(RenderCompositor* cmp, MaskMethod method, uint8_t opacity)
{
// save current composition settings
WgCompose* compose = (WgCompose*)cmp;
compose->method = method;
compose->opacity = opacity;
compose->blend = mBlendMethod;
WgSceneTask* sceneTaskCurrent = mSceneTaskStack.last();
// allocate new render target and push to the render tree stack
WgRenderTarget* renderTarget = mRenderTargetPool.allocate(mContext);
mRenderTargetStack.push(renderTarget);
// create and setup new scene task
WgSceneTask* sceneTask = new WgSceneTask(renderTarget, compose, sceneTaskCurrent);
sceneTaskCurrent->children.push(sceneTask);
mRenderTaskList.push(sceneTask);
mSceneTaskStack.push(sceneTask);
return true;
}
bool WgRenderer::endComposite(RenderCompositor* cmp)
{
// finish scene blending
if (cmp->method == MaskMethod::None) {
// get source and destination render targets
WgRenderTarget* src = mRenderTargetStack.last();
mRenderTargetStack.pop();
// pop source scene
WgSceneTask* srcScene = mSceneTaskStack.last();
mSceneTaskStack.pop();
// setup render target compose destitations
srcScene->renderTargetDst = mSceneTaskStack.last()->renderTarget;
srcScene->renderTargetMsk = nullptr;
// back render targets to the pool
mRenderTargetPool.free(mContext, src);
} else { // finish scene composition
// get source, mask and destination render targets
WgRenderTarget* src = mRenderTargetStack.last();
mRenderTargetStack.pop();
WgRenderTarget* msk = mRenderTargetStack.last();
mRenderTargetStack.pop();
// get source and mask scenes
WgSceneTask* srcScene = mSceneTaskStack.last();
mSceneTaskStack.pop();
WgSceneTask* mskScene = mSceneTaskStack.last();
mSceneTaskStack.pop();
// setup render target compose destitations
srcScene->renderTargetDst = mSceneTaskStack.last()->renderTarget;
srcScene->renderTargetMsk = mskScene->renderTarget;
// back render targets to the pool
mRenderTargetPool.free(mContext, src);
mRenderTargetPool.free(mContext, msk);
}
return true;
}
void WgRenderer::prepare(RenderEffect* effect, const Matrix& transform)
{
// prepare gaussian blur data
if (effect->type == SceneEffect::GaussianBlur) {
auto renderEffect = (RenderEffectGaussianBlur*)effect;
auto renderData = (WgRenderDataEffectParams*)renderEffect->rd;
if (!renderData) {
renderData = mRenderDataEffectParamsPool.allocate(mContext);
renderEffect->rd = renderData;
}
renderData->update(mContext, renderEffect, transform);
effect->valid = true;
} else
// prepare drop shadow data
if (effect->type == SceneEffect::DropShadow) {
auto renderEffect = (RenderEffectDropShadow*)effect;
auto renderData = (WgRenderDataEffectParams*)renderEffect->rd;
if (!renderData) {
renderData = mRenderDataEffectParamsPool.allocate(mContext);
renderEffect->rd = renderData;
}
renderData->update(mContext, renderEffect, transform);
effect->valid = true;
} else
// prepare fill
if (effect->type == SceneEffect::Fill) {
auto renderEffect = (RenderEffectFill*)effect;
auto renderData = (WgRenderDataEffectParams*)renderEffect->rd;
if (!renderData) {
renderData = mRenderDataEffectParamsPool.allocate(mContext);
renderEffect->rd = renderData;
}
renderData->update(mContext, renderEffect);
effect->valid = true;
} else
// prepare tint
if (effect->type == SceneEffect::Tint) {
auto renderEffect = (RenderEffectTint*)effect;
auto renderData = (WgRenderDataEffectParams*)renderEffect->rd;
if (!renderData) {
renderData = mRenderDataEffectParamsPool.allocate(mContext);
renderEffect->rd = renderData;
}
renderData->update(mContext, renderEffect);
effect->valid = true;
} else
// prepare tritone
if (effect->type == SceneEffect::Tritone) {
auto renderEffect = (RenderEffectTritone*)effect;
auto renderData = (WgRenderDataEffectParams*)renderEffect->rd;
if (!renderData) {
renderData = mRenderDataEffectParamsPool.allocate(mContext);
renderEffect->rd = renderData;
}
renderData->update(mContext, renderEffect);
effect->valid = true;
}
}
bool WgRenderer::region(RenderEffect* effect)
{
// update gaussian blur region
if (effect->type == SceneEffect::GaussianBlur) {
auto gaussian = (RenderEffectGaussianBlur*)effect;
auto renderData = (WgRenderDataEffectParams*)gaussian->rd;
if (gaussian->direction != 2) {
gaussian->extend.min.x = -renderData->extend;
gaussian->extend.max.x = +renderData->extend;
}
if (gaussian->direction != 1) {
gaussian->extend.min.y = -renderData->extend;
gaussian->extend.max.y = +renderData->extend;
}
return true;
} else
// update drop shadow region
if (effect->type == SceneEffect::DropShadow) {
auto dropShadow = (RenderEffectDropShadow*)effect;
auto renderData = (WgRenderDataEffectParams*)dropShadow->rd;
dropShadow->extend.min.x = -(renderData->extend + std::abs(renderData->offset.x));
dropShadow->extend.max.x = +(renderData->extend + std::abs(renderData->offset.x));
dropShadow->extend.min.y = -(renderData->extend + std::abs(renderData->offset.y));
dropShadow->extend.max.y = +(renderData->extend + std::abs(renderData->offset.y));
return true;
}
return false;
}
bool WgRenderer::render(RenderCompositor* cmp, const RenderEffect* effect, TVG_UNUSED bool direct)
{
mSceneTaskStack.last()->effect = effect;
return true;
}
void WgRenderer::dispose(RenderEffect* effect)
{
auto renderData = (WgRenderDataEffectParams*)effect->rd;
mRenderDataEffectParamsPool.free(mContext, renderData);
effect->rd = nullptr;
};
bool WgRenderer::preUpdate()
{
if (mContext.invalid()) return false;
return true;
}
bool WgRenderer::postUpdate()
{
return true;
}
bool WgRenderer::term()
{
if (rendererCnt > 0) return false;
//TODO: clean up global resources
rendererCnt = -1;
return true;
}
WgRenderer* WgRenderer::gen(TVG_UNUSED uint32_t threads)
{
//initialize engine
if (rendererCnt == -1) {
//TODO:
}
return new WgRenderer;
}