thorvg/src/lib/tvgShape.cpp
Hermet Park 2fd830c940 common shape: allow to reset stroke dash.
user may need to reset stroke dash to off,
now stroke api allows it.
2021-07-02 10:35:46 +09:00

427 lines
11 KiB
C++

/*
* Copyright (c) 2020-2021 Samsung Electronics Co., Ltd. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define _USE_MATH_DEFINES //Math Constants are not defined in Standard C/C++.
#include <limits>
#include <float.h>
#include <math.h>
#include "tvgShapeImpl.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
constexpr auto PATH_KAPPA = 0.552284f;
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
Shape :: Shape() : pImpl(new Impl(this))
{
_id = PAINT_ID_SHAPE;
Paint::pImpl->method(new PaintMethod<Shape::Impl>(pImpl));
}
Shape :: ~Shape()
{
delete(pImpl);
}
unique_ptr<Shape> Shape::gen() noexcept
{
return unique_ptr<Shape>(new Shape);
}
Result Shape::reset() noexcept
{
pImpl->path.reset();
pImpl->flag = RenderUpdateFlag::Path;
return Result::Success;
}
uint32_t Shape::pathCommands(const PathCommand** cmds) const noexcept
{
if (!cmds) return 0;
*cmds = pImpl->path.cmds;
return pImpl->path.cmdCnt;
}
uint32_t Shape::pathCoords(const Point** pts) const noexcept
{
if (!pts) return 0;
*pts = pImpl->path.pts;
return pImpl->path.ptsCnt;
}
Result Shape::appendPath(const PathCommand *cmds, uint32_t cmdCnt, const Point* pts, uint32_t ptsCnt) noexcept
{
if (cmdCnt == 0 || ptsCnt == 0 || !pts || !ptsCnt) return Result::InvalidArguments;
pImpl->path.grow(cmdCnt, ptsCnt);
pImpl->path.append(cmds, cmdCnt, pts, ptsCnt);
pImpl->flag |= RenderUpdateFlag::Path;
return Result::Success;
}
Result Shape::moveTo(float x, float y) noexcept
{
pImpl->path.moveTo(x, y);
pImpl->flag |= RenderUpdateFlag::Path;
return Result::Success;
}
Result Shape::lineTo(float x, float y) noexcept
{
pImpl->path.lineTo(x, y);
pImpl->flag |= RenderUpdateFlag::Path;
return Result::Success;
}
Result Shape::cubicTo(float cx1, float cy1, float cx2, float cy2, float x, float y) noexcept
{
pImpl->path.cubicTo(cx1, cy1, cx2, cy2, x, y);
pImpl->flag |= RenderUpdateFlag::Path;
return Result::Success;
}
Result Shape::close() noexcept
{
pImpl->path.close();
pImpl->flag |= RenderUpdateFlag::Path;
return Result::Success;
}
Result Shape::appendCircle(float cx, float cy, float rx, float ry) noexcept
{
auto rxKappa = rx * PATH_KAPPA;
auto ryKappa = ry * PATH_KAPPA;
pImpl->path.grow(6, 13);
pImpl->path.moveTo(cx, cy - ry);
pImpl->path.cubicTo(cx + rxKappa, cy - ry, cx + rx, cy - ryKappa, cx + rx, cy);
pImpl->path.cubicTo(cx + rx, cy + ryKappa, cx + rxKappa, cy + ry, cx, cy + ry);
pImpl->path.cubicTo(cx - rxKappa, cy + ry, cx - rx, cy + ryKappa, cx - rx, cy);
pImpl->path.cubicTo(cx - rx, cy - ryKappa, cx - rxKappa, cy - ry, cx, cy - ry);
pImpl->path.close();
pImpl->flag |= RenderUpdateFlag::Path;
return Result::Success;
}
Result Shape::appendArc(float cx, float cy, float radius, float startAngle, float sweep, bool pie) noexcept
{
const float M_PI_HALF = M_PI * 0.5f;
//just circle
if (sweep >= 360 || sweep <= -360) return appendCircle(cx, cy, radius, radius);
startAngle = (startAngle * M_PI) / 180;
sweep = sweep * M_PI / 180;
auto nCurves = ceil(abs(sweep / M_PI_HALF));
auto sweepSign = (sweep < 0 ? -1 : 1);
auto fract = fmodf(sweep, M_PI_HALF);
fract = (fabsf(fract) < std::numeric_limits<float>::epsilon()) ? M_PI_HALF * sweepSign : fract;
//Start from here
Point start = {radius * cos(startAngle), radius * sin(startAngle)};
if (pie) {
pImpl->path.moveTo(cx, cy);
pImpl->path.lineTo(start.x + cx, start.y + cy);
} else {
pImpl->path.moveTo(start.x + cx, start.y + cy);
}
for (int i = 0; i < nCurves; ++i) {
auto endAngle = startAngle + ((i != nCurves - 1) ? M_PI_HALF * sweepSign : fract);
Point end = {radius * cos(endAngle), radius * sin(endAngle)};
//variables needed to calculate bezier control points
//get bezier control points using article:
//(http://itc.ktu.lt/index.php/ITC/article/view/11812/6479)
auto ax = start.x;
auto ay = start.y;
auto bx = end.x;
auto by = end.y;
auto q1 = ax * ax + ay * ay;
auto q2 = ax * bx + ay * by + q1;
auto k2 = static_cast<float> (4.0/3.0) * ((sqrt(2 * q1 * q2) - q2) / (ax * by - ay * bx));
start = end; //Next start point is the current end point
end.x += cx;
end.y += cy;
Point ctrl1 = {ax - k2 * ay + cx, ay + k2 * ax + cy};
Point ctrl2 = {bx + k2 * by + cx, by - k2 * bx + cy};
pImpl->path.cubicTo(ctrl1.x, ctrl1.y, ctrl2.x, ctrl2.y, end.x, end.y);
startAngle = endAngle;
}
if (pie) pImpl->path.close();
pImpl->flag |= RenderUpdateFlag::Path;
return Result::Success;
}
Result Shape::appendRect(float x, float y, float w, float h, float rx, float ry) noexcept
{
auto halfW = w * 0.5f;
auto halfH = h * 0.5f;
//clamping cornerRadius by minimum size
if (rx > halfW) rx = halfW;
if (ry > halfH) ry = halfH;
//rectangle
if (rx == 0 && ry == 0) {
pImpl->path.grow(5, 4);
pImpl->path.moveTo(x, y);
pImpl->path.lineTo(x + w, y);
pImpl->path.lineTo(x + w, y + h);
pImpl->path.lineTo(x, y + h);
pImpl->path.close();
//circle
} else if (fabsf(rx - halfW) < FLT_EPSILON && fabsf(ry - halfH) < FLT_EPSILON) {
return appendCircle(x + (w * 0.5f), y + (h * 0.5f), rx, ry);
} else {
auto hrx = rx * 0.5f;
auto hry = ry * 0.5f;
pImpl->path.grow(10, 17);
pImpl->path.moveTo(x + rx, y);
pImpl->path.lineTo(x + w - rx, y);
pImpl->path.cubicTo(x + w - rx + hrx, y, x + w, y + ry - hry, x + w, y + ry);
pImpl->path.lineTo(x + w, y + h - ry);
pImpl->path.cubicTo(x + w, y + h - ry + hry, x + w - rx + hrx, y + h, x + w - rx, y + h);
pImpl->path.lineTo(x + rx, y + h);
pImpl->path.cubicTo(x + rx - hrx, y + h, x, y + h - ry + hry, x, y + h - ry);
pImpl->path.lineTo(x, y + ry);
pImpl->path.cubicTo(x, y + ry - hry, x + rx - hrx, y, x + rx, y);
pImpl->path.close();
}
pImpl->flag |= RenderUpdateFlag::Path;
return Result::Success;
}
Result Shape::fill(uint8_t r, uint8_t g, uint8_t b, uint8_t a) noexcept
{
pImpl->color[0] = r;
pImpl->color[1] = g;
pImpl->color[2] = b;
pImpl->color[3] = a;
pImpl->flag |= RenderUpdateFlag::Color;
if (pImpl->fill) {
delete(pImpl->fill);
pImpl->fill = nullptr;
pImpl->flag |= RenderUpdateFlag::Gradient;
}
return Result::Success;
}
Result Shape::fill(unique_ptr<Fill> f) noexcept
{
auto p = f.release();
if (!p) return Result::MemoryCorruption;
if (pImpl->fill && pImpl->fill != p) delete(pImpl->fill);
pImpl->fill = p;
pImpl->flag |= RenderUpdateFlag::Gradient;
return Result::Success;
}
Result Shape::fillColor(uint8_t* r, uint8_t* g, uint8_t* b, uint8_t* a) const noexcept
{
if (r) *r = pImpl->color[0];
if (g) *g = pImpl->color[1];
if (b) *b = pImpl->color[2];
if (a) *a = pImpl->color[3];
return Result::Success;
}
const Fill* Shape::fill() const noexcept
{
return pImpl->fill;
}
Result Shape::stroke(float width) noexcept
{
if (!pImpl->strokeWidth(width)) return Result::FailedAllocation;
return Result::Success;
}
float Shape::strokeWidth() const noexcept
{
if (!pImpl->stroke) return 0;
return pImpl->stroke->width;
}
Result Shape::stroke(uint8_t r, uint8_t g, uint8_t b, uint8_t a) noexcept
{
if (!pImpl->strokeColor(r, g, b, a)) return Result::FailedAllocation;
return Result::Success;
}
Result Shape::strokeColor(uint8_t* r, uint8_t* g, uint8_t* b, uint8_t* a) const noexcept
{
if (!pImpl->stroke) return Result::InsufficientCondition;
if (r) *r = pImpl->stroke->color[0];
if (g) *g = pImpl->stroke->color[1];
if (b) *b = pImpl->stroke->color[2];
if (a) *a = pImpl->stroke->color[3];
return Result::Success;
}
Result Shape::stroke(unique_ptr<Fill> f) noexcept
{
return pImpl->strokeFill(move(f));
}
const Fill* Shape::strokeFill() const noexcept
{
if (!pImpl->stroke) return nullptr;
return pImpl->stroke->fill;
}
Result Shape::stroke(const float* dashPattern, uint32_t cnt) noexcept
{
if ((cnt == 1) || (!dashPattern && cnt > 0) || (dashPattern && cnt == 0)) {
return Result::InvalidArguments;
}
for (uint32_t i = 0; i < cnt; i++)
if (dashPattern[i] < FLT_EPSILON) return Result::InvalidArguments;
if (!pImpl->strokeDash(dashPattern, cnt)) return Result::FailedAllocation;
return Result::Success;
}
uint32_t Shape::strokeDash(const float** dashPattern) const noexcept
{
if (!pImpl->stroke) return 0;
if (dashPattern) *dashPattern = pImpl->stroke->dashPattern;
return pImpl->stroke->dashCnt;
}
Result Shape::stroke(StrokeCap cap) noexcept
{
if (!pImpl->strokeCap(cap)) return Result::FailedAllocation;
return Result::Success;
}
Result Shape::stroke(StrokeJoin join) noexcept
{
if (!pImpl->strokeJoin(join)) return Result::FailedAllocation;
return Result::Success;
}
StrokeCap Shape::strokeCap() const noexcept
{
if (!pImpl->stroke) return StrokeCap::Square;
return pImpl->stroke->cap;
}
StrokeJoin Shape::strokeJoin() const noexcept
{
if (!pImpl->stroke) return StrokeJoin::Bevel;
return pImpl->stroke->join;
}
Result Shape::fill(FillRule r) noexcept
{
pImpl->rule = r;
return Result::Success;
}
FillRule Shape::fillRule() const noexcept
{
return pImpl->rule;
}