thorvg/src/loaders/lottie/tvgLottieInterpolator.cpp
2025-01-03 14:32:31 +09:00

140 lines
No EOL
5.1 KiB
C++

/*
* Copyright (c) 2023 - 2025 the ThorVG project. All rights reserved.
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <string.h>
#include "tvgCommon.h"
#include "tvgMath.h"
#include "tvgLottieInterpolator.h"
/************************************************************************/
/* Internal Class Implementation */
/************************************************************************/
#define NEWTON_MIN_SLOPE 0.02f
#define NEWTON_ITERATIONS 4
#define SUBDIVISION_PRECISION 0.0000001f
#define SUBDIVISION_MAX_ITERATIONS 10
static inline float _constA(float aA1, float aA2) { return 1.0f - 3.0f * aA2 + 3.0f * aA1; }
static inline float _constB(float aA1, float aA2) { return 3.0f * aA2 - 6.0f * aA1; }
static inline float _constC(float aA1) { return 3.0f * aA1; }
static inline float _getSlope(float t, float aA1, float aA2)
{
return 3.0f * _constA(aA1, aA2) * t * t + 2.0f * _constB(aA1, aA2) * t + _constC(aA1);
}
static inline float _calcBezier(float t, float aA1, float aA2)
{
return ((_constA(aA1, aA2) * t + _constB(aA1, aA2)) * t + _constC(aA1)) * t;
}
float LottieInterpolator::getTForX(float aX)
{
//Find interval where t lies
auto intervalStart = 0.0f;
auto currentSample = &samples[1];
auto lastSample = &samples[SPLINE_TABLE_SIZE - 1];
for (; currentSample != lastSample && *currentSample <= aX; ++currentSample) {
intervalStart += SAMPLE_STEP_SIZE;
}
--currentSample; // t now lies between *currentSample and *currentSample+1
// Interpolate to provide an initial guess for t
auto dist = (aX - *currentSample) / (*(currentSample + 1) - *currentSample);
auto guessForT = intervalStart + dist * SAMPLE_STEP_SIZE;
// Check the slope to see what strategy to use. If the slope is too small
// Newton-Raphson iteration won't converge on a root so we use bisection
// instead.
auto initialSlope = _getSlope(guessForT, outTangent.x, inTangent.x);
if (initialSlope >= NEWTON_MIN_SLOPE) return NewtonRaphsonIterate(aX, guessForT);
else if (initialSlope == 0.0) return guessForT;
else return binarySubdivide(aX, intervalStart, intervalStart + SAMPLE_STEP_SIZE);
}
float LottieInterpolator::binarySubdivide(float aX, float aA, float aB)
{
float x, t;
int i = 0;
do {
t = aA + (aB - aA) / 2.0f;
x = _calcBezier(t, outTangent.x, inTangent.x) - aX;
if (x > 0.0f) aB = t;
else aA = t;
} while (fabsf(x) > SUBDIVISION_PRECISION && ++i < SUBDIVISION_MAX_ITERATIONS);
return t;
}
float LottieInterpolator::NewtonRaphsonIterate(float aX, float aGuessT)
{
// Refine guess with Newton-Raphson iteration
for (int i = 0; i < NEWTON_ITERATIONS; ++i) {
// We're trying to find where f(t) = aX,
// so we're actually looking for a root for: CalcBezier(t) - aX
auto currentX = _calcBezier(aGuessT, outTangent.x, inTangent.x) - aX;
auto currentSlope = _getSlope(aGuessT, outTangent.x, inTangent.x);
if (currentSlope == 0.0f) return aGuessT;
aGuessT -= currentX / currentSlope;
}
return aGuessT;
}
/************************************************************************/
/* External Class Implementation */
/************************************************************************/
float LottieInterpolator::progress(float t)
{
if (outTangent.x == outTangent.y && inTangent.x == inTangent.y) return t;
return _calcBezier(getTForX(t), outTangent.y, inTangent.y);
}
void LottieInterpolator::set(const char* key, Point& inTangent, Point& outTangent)
{
if (key) this->key = strdup(key);
this->inTangent = inTangent;
this->outTangent = outTangent;
if (outTangent.x == outTangent.y && inTangent.x == inTangent.y) return;
//calculates sample values
for (int i = 0; i < SPLINE_TABLE_SIZE; ++i) {
samples[i] = _calcBezier(float(i) * SAMPLE_STEP_SIZE, outTangent.x, inTangent.x);
}
}